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Abstract In this article, we discuss the perspective of

intraorganismal ecology by investigating a family of eco-

logical models. We consider two types of models. First-

order models describe the population dynamics as being

directly affected by ecological factors (here understood as

nutrients, space, etc). They might be thought of as analo-

gous to Aristotelian physics. Second-order models describe

the population dynamics as being indirectly affected, the

ecological factors now affecting the derivative of the

growth rate (that is, the population acceleration), possibly

through an impact on nongenetically inherited factors.

Second-order models might be thought of as analogous to

Galilean physics. In a companion article, we apply these

ideas to a situation of gene therapy.

Keywords Ecosystem engineering ? Inertial dynamics ?
Intraorganismal ecology ? Niche construction ? Nongenetic

inheritance

Introduction

The organism can be seen as a biome, composed of organs

that are ecosystems where ecological and evolutionary

drama are played out (Kupiec and Sonigo 2003).

This perspective draws back to the speculations of

Roux (1881) and Weismann (1904)1 on selection

occurring inside the organism. More recently, eco-evo-

lutionary processes between cells within an organism

have been considered, both to explain the existence of

protection mechanisms against the proliferation of cancer

cells within an organism (Cairns 1975; Nowak et al.

2003), to predict the spread of resistant phenotypes

within cell populations during cancer treatments (Nowell

1976; Merlo et al. 2006), to describe intra-host dynamics

of infectious diseases or cancers as predator-prey inter-

actions between viruses and the immune system (Nowak
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1 See, e.g., Weismann et al. (1904), quoted by Gould (2002, p. 223):

‘‘I have called these processes which are ceaselessly going on within

the germplasm, Germinal Selection, because they are analogous to

those processes of selection which we already know in connection

with the larger vital units, cells, cell-groups and persons. If the

germplasm be a system of determinants, then the same laws of

struggle for existence in regard to food and multiplication must hold

sway among its parts which hold sway between all systems of vital

units-among the biophors which form the protoplasm of the cell-body,

among the cells of tissue, among the tissues of an organ, among the

organs themselves, as well as among the individuals of a species and

between species which compete with one another’’ (Weismann et al.

1904, vol. 2, p. 119).
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and May 2000; Merlo et al. 2006),2 or to apply the

neutral theory of biodiversity (Hubbell 2001) to gut or

skin flora communities (e.g., Turnbaugh et al. 2007; Roth

and James 1988, 1989).

This article takes place in such an intraorganismal, eco-

evolutionary perspective. The topic we are interested in is

the study of a gene therapy. Gene therapy aims at cor-

recting a physiological dysfunction whose origin is the

inadequate expression of a defective gene. In practice,

patient cells are genetically modified in vitro by inserting a

given gene, and then reinjected to the patient, with the aim

that these modified cells replace the resident cells, or at

least that they durably persist within the patient’s body:

that is, that cells be successfully engrafted (Aiuti and

Giovannetti 2003; Cavazzana-Calvo et al. 2005). From an

ecological point of view, the prospective replacement of a

cellular strain by another is similar to a competitive

exclusion or a drift, while modification of the cellular

environment, for instance by producing a missing enzyme,

is similar to ecosystem engineering (Jones et al. 1994) or,

in other terms, to niche construction (Odling-Smee et al.

2003, chap. 5).3 Successful or unsuccessful engraftment

qua species invasion will then depend on the details of the

ecological interaction (Gonzalez et al. 2008). The aim of

the present work is to determine the conditions of suc-

cessful engraftment.

To this end, we will study a family of ecological models

describing the dynamics of cell populations within an

organism. In the first part, we will present the family of

models of competition between cells in the general, non-

pathological, case. This will enable us to more easily dis-

cuss those aspects of the models that are not limited to the

particular case of gene therapy.

General Model of Cell Population Dynamics

We consider that cells proliferate inasmuch as limiting

constraints enable them to. More specifically, we will

assume here that the population dynamics directly depends

on a limiting factor uðtÞ. uðtÞ may, in principle, be any kind

of quantity that is extensive (i.e., proportional to the size of

the system) and restricts the tendency of cells to proliferate:

available space, fluxes of nutrients, oxygen, growth factors,

etc. In the following models, we will not specify uðtÞ’s
dynamics; in particular, we will consider that uðtÞ is not

modified by cell populations (e.g., there is no stock or

consumption dynamics), and that it is determined by factors

that are external to the considered organ. Thus, uðtÞ forces4

the dynamics. This hypothesis could be relaxed by modeling

uðtÞ as, for instance, a prey within a predator-prey system,

but this generalization is not necessary at this step.

First-Order Model

We consider that the limiting factor uðtÞ is instantaneously

equitably shared among cells. This hypothesis is similar to

the ratio-dependence hypothesis in predator-prey models

(Arditi and Ginzburg 1989; Akçakaya et al. 1995). The

model is assumed to be valid only when the number N of

cells is large enough, that is, the model is valid when the

considered factors uðtÞ are limiting. The per capita growth

rate r increases instantaneously, linearly with the available

quantity of limiting factor by cell: we thus consider a sit-

uation where doubling both the limiting factor and the

population will not change the per capita growth rate by

cell. Cells undergo a constant intrinsic mortality m.

r ¼ dN

Ndt
¼ au
N
? m ð1Þ

where a is a scale constant.

Equation 1 admits one (stable) equilibrium:

N? ¼ au
m

The system relaxes towards the equilibrium with a

characteristic time s ¼ 1=m (Fig. 1). This equilibrium

2 Among this corpus, we can mention the following works to give a

sketch of the intraorganismal, ecological perspective. Phillips (1996)

is a textbook example in this regard. Philips used a population

dynamics model of virions and lymphocytes to explain that the

diminution in the viral load of a patient infected by HIV did not

necessarily come from an immune response of the organism,

contrarily to what had been supposed until then. Alizon and Baalen

(2008) used a nested approach to describe at the same time the intra-

host dynamics during a coinfection, and the epidemiological dynam-

ics within the host’s population. They predicted the emergence of

hyper-virulent parasitic strategies, a prediction that would have been

impossible to obtain by making a classical trade-off hypothesis

between transmission and virulence and without taking the intra-host

dynamics into account (Alizon et al. 2009). Brown et al. (2008)

imported the then-recent ecological concept of niche construction to

produce epidemiological models of gut flora dynamics. Last, Cairns

et al. (2009) applied the concept of predator-prey relationships to

bacteriophage-bacteria dynamics in the field of phage-therapies.
3 Modeling works on gene therapy do exist in the literature, but they

rather adopt a molecular perspective such as, for instance, works on

the optimization of transgenesis vectors (e.g. Tayi et al. 2010), the

multi-scale treatment of angiogenesis (Billy et al. 2009; Mac Gabhann

et al. 2010), or anti-HIV gene therapy (Murray et al. 2009). The

models that are closer to an ecological perspective concern the

treatment of cancer by oncolytic viruses: for instance, Novozhilov and

colleagues apply a ratio-dependent predator-prey model (Arditi and

Ginzburg 1989) to describe the destruction of a tumor by oncolytic

viruses—a result that is impossible to predict, by the way, by more

classical non-ratio-dependent models (Novozhilov et al. 2006). Bach

et al. (2001) and Dingli et al. (2009), among others, are other

examples of eco-evolutionary approaches to cancer therapies.

4 Forcing here means that a variable imposes a certain dynamics on

another variable without being itself affected by the interaction.

402 A. Pocheville, M. Montévil
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requires uðtÞ to have a sufficiently slow dynamics to allow

us to consider the limiting factor as locally constant. We

can then consider that at the scale of uðtÞ’s variations the

system follows its equilibrium value in function of uðtÞ:

NðtÞ ’ auðtÞ
m

From then on, we consider only the case where uðtÞ is

constant at the scale of NðtÞ variations. To ease reading, we

will write it u.

Second-Order Model

We now turn to a different type of modeling, following the

work of Ginzburg and colleagues on demographic inertia

(Ginzburg and Colyvan 2004). We consider that the per

capita growth rate now shows a certain inertia (comparable

to inertia in Newtonian physics) that is perceptible at the

scale of population dynamics. To put it differently, we will

not separate the timescales of the per capita growth rate

dynamics and of the population dynamics.

From the biological point of view, such an inertia in the

per capita growth rate can result from a dynamics in cell

quality (e.g., available amount of intracellular resources or

organization quantity, sensu Bailly and Longo 2009). Then,

if environmental conditions worsen, intracellular resources

lead to a delay in the demographic response; conversely if

living conditions get better the cells first rebuild their

intracellular resources before their demographic parame-

ters (division and mortality) get affected. Individual quality

can also be transmitted to offspring, a phenomenon known

in ecology as maternal effects (e.g., Mousseau and Fox

1998).

In this model, it is the change of the per capita growth

rate that depends on the per capita limiting factor u, times a

given constant a. In the absence or lack of the limiting

factor, the per capita growth rate decreases at a rate m (m

typically models the amount of the limiting factor required

to sustain proliferation, for example the consumption of

oxygen or nutrient). We can now write the equation of

demographic acceleration:

dr

dt
¼ au
N
? m ð2Þ

The model is formally similar to the first-order model, but

notice that the dimensionality and the meaning of the

variables has now changed. The equilibrium of Eq. 2

results when r ¼ 0 and N? ¼ au=m. The equilibrium is

stable.

A Note on the Analogy with Physics

In this model, demographic factors (u and m) impact the

acceleration dr=dt and not the speed r of demographic

change. This conceptual change is worth discussing at

some length, as it will enable some of the deep theoretical

assumptions that lie behind modeling choices to be

revealed. This will lead us to discuss ideal, default states in

population dynamics, with the proviso that the aim of a

theory is to describe the deviations from the default state

(e.g., zero force case).

According to Eq. 2, in the idealized case where

u ¼ m ¼ 0, the population grows (or decreases) at a con-

stant pace that depends on initial conditions, which is

equivalent to the uniform straight movement of a body on

which no force is exerted in Newtonian physics. By con-

trast, the first-order, non-inertial model (Eq. 1) is compa-

rable to Aristotelian physics, where the absence of any

factor modifying the dynamics results in zero speed

(demographic stasis).

Our interpretation of demographic inertia departs from

Ginzburg’s here (Ginzburg and Colyvan 2004, Chap. 6),

who consider that the default state of dynamics is the

absence of limiting factors (i.e., r ¼ rmax). With Ginzburg’s

interpretation, the default dynamics (equivalent to the

straight uniform movement) depends on a biological

property (rmax), and not from initial conditions (by contrast

with the straight uniform movement, where the speed

depends on the initial speed vð0Þ and not on the properties

of a physical body such as its mass). Ginzburg’s interpre-

tation of what the default dynamics should be is similar to

Lotka’s (1925) in his first-order equation dN=Ndt ¼
r 1? N=Kð Þ, where when N is small in comparison with K,

limiting factors (K) do not impact the dynamics and the

speed dN=Ndt is given by the maximum per capita growth

rate.

Fig. 1 Relaxation toward the equilibrium in the first-order model.

Abscissae: time. Ordinates: N. au ¼ 1:5, m ¼ 0:5, Nð0Þ ¼ 3:2
(arbitrary units)
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By contrast, we consider here that the metabolism m

should count as a factor impacting the acceleration dr=dt,

and we should accept ignoring metabolism to produce an

idealization comparable to Newtonian idealization. In this

case the idealized dynamics is given by the initial condition

rð0Þ and not the property rmax.

Contrary to Newtonian physics, however, where the

default state is general, the idealized Eq. 2 where all factors

are put to zero can make sense only in very special cases

where cell quality is fully heritable during divisions (e.g.,

some environment-sensitive epigenetic marks), that is, it

does not hold for intracellular resources that are shared

among daughter cells. Below we will consider the impact

of resource sharing among offspring, and see how it radi-

cally modifies the dynamics.

Differences Between Inertial and Non-inertial

Dynamics: Accelerated Death, Overshoot

In the inertial model (Eq. 2), death is accelerated when the

limiting factor is the strongest (i.e., set to zero): the per

capita growth rate decreases and can tend towards ?1
(that is, death rate tends to be instantaneous). By contrast,

in the non-inertial model (Eq. 1), in the absence of the

limiting factor the per capita growth rate remains constant

(and negative: u ¼ 0 implies r ¼ ?m) (Fig. 2). At the level

of organisms population dynamics, accelerated death is

empirically observed (Akçakaya et al. 1988; Ginzburg

et al. 1988).

An inertial dynamics also allows to overshoot the

demographic equilibrium value of the population (Figs. 3,

4). Overshoot leads to demographic oscillations around the

equilibrium value with a pulsation
ffiffiffiffi
m

p
, that is, a period

T ¼ 2p=
ffiffiffiffi
m

p
(see ‘‘Linearized Monospecific Second-Order

System’’ in Appendix). In biological terms, metabolism

accelerates the pulsation, which can be interpreted as an

acceleration of biological time (Bailly et al. 2011).

Fig. 2 Comparison between the exponential death (straight line) and

the accelerated death (curved line). Abscissae: time. Ordinates: lnðNÞ.
Plain line: first-order model (Eq. 1). Stars: second-order model (Eq.

2). Limiting factor au is set to zero at t ¼ 15. Death is exponential

(i.e., linear with lnðNÞ) in the first-order model, and accelerated (that

is, faster than an exponential) in the second-order model. au ¼ 10,

m ¼ 0:5, Nð0Þ ¼ 5 (arbitrary units)

Fig. 3 Demographic dynamics in the second-order model (Equation

2). Abscissae: time. Stars: N. Squares: dN=dt. The system undergoes

non-damped oscillations. au ¼ 1, m ¼ 0:5, Nð0Þ ¼ 1:5, dN=dtð0Þ ¼
0:1 (arbitrary units)

Fig. 4 Trajectories within the second-order model (Eq. 2) in the state

space ðN; dN=dtÞ, and the basin of attraction of the stable equilibrium.

Abscissae: N. Ordinates: dN=dt. Trajectories start on the left and end

on the right. The squares curve and the central curve tend to the fixed

point. The stars curve rolls away from the fixed point, which means

that the basin of attraction is limited. Notice however that the model is

designed for cases where N is not small in comparison to au. au ¼ 1

m ¼ 0:5 dN=dtð0Þ ¼ 0; nð0Þ ¼ 1; 1:4; 1:8 (arbitrary units)
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123



Friction, Antifriction

In the model described by Eq. 2, oscillations around the

equilibrium value are neither damped nor amplified. Such

a behavior is structurally unstable: small modifications of

the model lead to the convergence toward stable equi-

librium or to divergence (May 1973; Nowak and May

2000).

From a biological point of view, oscillations are damped

when good quality cells (r[ 0) tend to waste their intra-

cellular resources more and/or when poor quality cells

(r\0) spare their resources. Also, when cells share their

resources during a division between daughter cells, there is

a negative impact of r on itself, through cell quality, which

leads to oscillation damping. By contrast, oscillations

would be amplified if good quality (r[ 0) entailed a vir-

tuous circle improving cell organization and quality, and

poor quality (r\0) entailed a vicious cycle leading to even

more decreased r. Note that the environment can also have

friction, forcing, or resonance effects. We can capture this

dynamical behavior whose causes are diverse with a simple

phenomenological function that represents friction (f [ 0)

or antifriction (f\0).

dr

dt
¼ au
N
? m ? fr ð3Þ

Equation 3 cancels out when r ¼ r?:

r? ¼ 1

f

au
N
? m

? ?

r? corresponds to the limiting speed due to friction (f [ 0,

r? is a stable equilibrium) or antifriction (f\0, r? is an

unstable equilibrium).

In particular, in the case of a free fall (N ¼ 1 or u ¼ 0)

with friction (f [ 0), r reaches a maximal value:

r? ¼ ?m=f . In this case, the per capita growth rate is given

by two intrinsic cellular properties, metabolism and fric-

tion. This limiting speed is analogous to the limiting speed

of a body in free fall in a medium with non-null viscosity,

which is also given by medium and body properties.

Ginzburg and Colyvan (2004, p. 90) also modeled

population dynamics with a second-order equation (that is,

with dr=dt) with a phenomenological term of friction.

However, the limiting speed (per capita) of a free fall in

their model is proportional to N=N?, which is not a prop-

erty of the cells.5

Close to the equilibrium, the system with friction

(f [ 0) can follow three different regimes depending on the

sign of D ¼ f 2=4? m (Figs. 5, 6; see calculations ‘‘Line-

arized Monospecific Second-Order System’’ in Appendix):

1. pseudoperiodical regime with damped oscillations

(D\0): the pulsation is given by x :

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m ? f

2

4

r

The period is given by T ¼ 2p=x. The relaxation time

is given by s:

s ¼ 2

f

Fig. 5 Second-order model with friction. Abscissae: time. Ordinates:

N. Plain line: pseudoperiodical regime. Stars curve: critical regime.

Square curve: aperiodical regime. In the pseudoperiodical regime,

friction being small, it takes time for the system to dissipate its

‘‘kinetic energy.’’ In the aperiodical regime, friction being strong, it

takes time for the system to grow to the equilibrium. In the critical

regime, the system converges more quickly. au ¼ 4, m ¼ 1, f ¼ 0:4
(oscillations), 2 (critical regime), 3 (aperiodical regime)

Fig. 6 Phase portrait of the pseudoperiodical regime in the second-

order model with friction (Eq. 3). Abscissae: N, ordinates: dN=dt. The

trajectory starts on the left. The equilibrium is a global attractor.

au ¼ 4, m ¼ 1, f ¼ 0:4, lnðNð0ÞÞ ¼ 1:5

5 The N=N? density dependence function can make sense, for

instance, when the limiting factor is space.

Ecological Models for Gene Therapy 405

123



2. critical regime (D ¼ 0): the system shows shows no

oscillations and relaxes with a characteristic time

s ¼ 2=f .

3. aperiodical regime (D[ 0): the system returns to

equilibrium with a relaxation time s:

s ¼ 2

f ? 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

4
? m

q

Note that relaxation is slower than in the damped

oscillation regime, because now friction also opposes

to the return to equilibrium.

We will see how, from a theoretical point of view, the

existence of friction in cell population dynamics can have

therapeutic implications.

Model with Two Species

In this section we derive the models from above to describe

the case of an interaction between two species (in our case, two

cellular strains). These are the models we will use in the

companion paper. Though we describe the dynamics from a

general point of view in this section (that is, without making

any symmetry assumption about the species in presence) we

will be able to drastically reduce the number of parameters in

the following part assuming that the cellular strains (geneti-

cally modified and non-modified) are identical in most respect.

First-Order Model

We suppose that the two species interact in a competitive

way via their dependency to the limiting factor u. We

describe the interaction by making a superposition

hypothesis (i.e., of linear competition) comparable to the

one used in the Lotka-Volterra interspecific competition

model.

dN1

N1dt
¼ a1u
N1 þ q2!1N2

? m1 ð4Þ

dN2

N2dt
¼ a2u
N2 þ q1!2N1

? m2 ð5Þ

qi?j describes the per capita effect of i on j. The model is

valid only if q? 0, that is, in the case of competition. If

q\0, the interaction corresponds to facilitation and the

hypothesis of superposition is not adequate anymore (we

should then introduce for instance a reciprocal saturation

term between N1 and N2).

The behavior of the system, and in particular the sta-

bility of the equilibria in the space of parameters is shown

in Fig. 7. The system has three equilibria: two equilibria

correspond to the loss of at least one species and reduce to

the monospecific case, one corresponds to the coexistence

between populations 1 and 2.

(a) N?1 ¼ 0 and N?2 ¼ a2u=m2; or N?2 ¼ 0 and

N?1 ¼ a1u=m1.

(b) the equilibrium corresponding to coexistence is

given by the couple fN?1 ;N?2g, when q21q12 6¼ 1:

N?1 ¼
1

1? q21q12

? ?
a1u
m1

? q21

a2u
m2

? ?

N?2 ¼
1

1? q21q12

? ?
a2u
m2

? q12

a1u
m1

? ?

The equilibrium is a coexistence if N?1[ 0 and

N?2[ 0. There is never coexistence if q21q12 ¼ 1,

except in the particular case where a1=m1 ¼ q21a2=m2.

In this case, coexistence is neutral and the equilibrium is

insensitive to the relative abundances of 1 and 2, as long

as the equation N1 þ q21N2 ¼ a1u=m1 is true.

Second-Order Model

We similarly extend the second-order monospecific

model to the two-species case by making the same

assumptions about the competitive interaction between

1 and 2:

dr1

dt
¼ a1u
N1 þ q21N2

? m1 ð6Þ

1

2

3

q 2
→

1

1 2 3

q1→2

A2/A1

A1/A2
21

stable 1

2

1

2
21

unstable, depends
on initial conditions

Fig. 7 Results of competition in the parameter space. To ease reading,

we write A1 ¼ a1u=m1 and A2 ¼ a2u=m2. Abscissae: q12. Ordinates:

q21. Dashed line: q12q21 ¼ 1. The coexistence zone corresponds to the

domain where there is less competition between species 1 and 2
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dr2

dt
¼ a2u
N2 þ q12N1

? m2 ð7Þ

The equilibrium of this system obtains for the same equi-

librium values as the first-order system (steady r) and when

the per capita growth rates are equal to zero (r1 ¼ r2 ¼ 0).

The stability of the equilibrium is given by the sign of the

highest eigenvalue (here noted m, the other eigenvalue

being noted l; see ‘‘Linearized Two-Species Second-Order

Model (Without Friction)’’ in Appendix). When m[ 0 the

fixed point fN?1 ;N?2g is unstable and one of the two pop-

ulations is eliminated. If m\0, then N1 and N2 follow

superimposed independent oscillations of pulsations
ffiffiffiffiffiffiffi?lp

and
ffiffiffiffiffiffi?mp

around the equilibrium value. The system does

not show coupled oscillations (Fig. 8).

Second-Order Model with Friction

We now add friction to the two-species model:

dr1

dt
¼ a1u
N1 þ q2!1N2

? m1 ? f1r1 ð8Þ

dr2

dt
¼ a2u
N2 þ q1!2N1

? m2 ? f2r2 ð9Þ

From then on, we will only consider cases where

f1 ¼ f2 ¼ f . In this case, it can be shown that the conditions

for local stability are not affected by friction (see ‘‘Line-

arized Two-Species Second-Order System (with Friction)’’

in Appendix). In the stable case the dynamics corresponds

to the linear superposition of two dynamics following

Eq. 3, thus showing the same kind of behaviors. The main

difference with the introduction of friction is that the sys-

tem now tends towards its equilibrium, and near the

equilibrium it relaxes towards equilibrium with damped

oscillations.

Discussion

A model of population dynamics should exhibit three

essential behaviors: decline in absence of resources, growth

in non-limiting situations, (rmax),
6 and the potential exis-

tence of a carrying capacity (N?) due to limiting factors

(nutrients or space). These three behaviors can be biolog-

ically linked: for instance, an increase in mortality can

affect both rmax and N?. In contrast, they can be biologi-

cally independent: for instance, if N? is due to limiting

space, genetically modifying the cells can increase rmax
without affecting N?.

It is impossible to represent the possible actions on these

three independent behaviors with only two parameters

(e.g., au and m in our model, r and K in Lotka-Volterra),

and it is impossible to represent a N? independent from rmax
with first-order equations (Ginzburg 1992).7

Under these constraints, and to favor parsimony which is

essential to our application on gene therapy (see compan-

ion paper), we have sacrificed the behavior of the popu-

lation far from the N? (i.e., we did not introduce any rmax).

An alternative choice would have been to use the logistic

equation in Verhulst’s (1838) form:

dN

Ndt
¼ a? bN

or in the version of Lotka (1925):

dN

Ndt
¼ r 1? N

K

? ?

We did not choose this model for the following reasons:

1. The difficulty of interpreting the parameters (Olson

1992). First, a, or r, both represent rmax and have an

impact on the density-dependence (N? ¼ a=b in Ver-

hulst’s equation and thus depends on rmax ¼ a;
conversly, N? ¼ K and is independent from r in

Lotka’s equation but now the density parameter, that

is, the amount to which the population is sensitive to

itself, is r=K). Second, K should not be interpreted as a

carrying capacity but as an equilibrium value (Berry-

man 1992). In other terms, in the logistic equation the

inflexion point is a center of symmetry between growth

Fig. 8 Superposed oscillations in the second-order model with two

species. Abscissae: time. au ¼ 1:5, m ¼ 0:5, q21 ¼ 0:8, q12 ¼ 0:9,

n1ð0Þ ¼ 1:6 (upper curve), dn1=dtð0Þ ¼ 0, n2ð0Þ ¼ 1 (lower curve),

dn2=dtð0Þ ¼ 0:3; with n ¼ lnðNÞ

6 We mean by r here dN=Ndt, and not the r parameter in Lotka’s

equation given above. rmax thus means ðdN=NdtÞmax.
7 Such an independence between N? and rmax can be approached,

however (Watkinson 1992; Getz 1996, see also ‘‘Model of a Limiting

Maximal per Capita Growth Rate rmax’’ in Appendix).
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when the population is small, and growth near the

equilibrium, which does not seem to have any obvious

biological basis (Winsor 1932).

2. The unrealistic form of the density dependence (Getz

1996), when N ? N? (McCarthy 1997; Courchamp

et al. 1999; Etienne et al. 2002; Kent and Patrick

Doncaster 2003), but also when N ? N?: in this case

the per capita death rate is proportional to the ratio

N=N?, and not to a property of the biological system in

the absence of resources (death by food shortage for

instance). This behavior comes from the fact that

Verhulst’s equation is a truncated Taylor series. We

find the same behavior in the inertial model of

Ginzburg and Colyvan (2004, p. 90), which has the

same form (but at the second order).

We have chosen here to model the dynamics for situations

where N is not far from N?. The rationale for this

hypothesis comes from our interest in modeling cell pop-

ulations within an organism (see companion article), that

can be supposed to undergo only small or slow variations

because of constraints posed by the organism. We have

privileged a density-dependence that is less abrupt (sensu

Getz 1996) than that of the logistic equation when

N ? N?; in particular, we have privileged a free-fall speed

that is a property of the individuals, and not a function of

the distance between N and N?. Such attention to the form

of density dependence could turn out to be crucial in niche

construction cases where the modification of the N? is the

focal behavior (Odling-Smee et al. 2003; Pocheville 2010,

Chap. 2). It would be most instructive to empirically study

the form of the density-dependence that is better adapted to

intraorganismal ecology: should chemical constraints

(resources, signals, toxins) lead to a less abrupt density-

dependence than physical constraints (mechanical con-

straints and limiting space)? Do these forms of density-

dependence have the same timescales, or do the spatial

constraints rather impact the first-order dynamics, and the

chemical constraints the second-order?8

In this work, we limited ourselves to the ecological

dimension of the cellular niche, that is, to the impact of

density on competition. However, in intraorganismal

ecology density-dependence has effects that are unknown

in organism ecology. Physical constraints, in particular, are

known to affect the differentiation of stem cells in given

niches (Gerecht-Nir et al. 2004; Mohr et al. 2006; Stevens

et al. 2007) as well as to affect the malignant phenotype

and the response to treatments in the case of cancer (Ingber

and Jamieson 1985; Huang and Ingber 2005; Paszek et al.

2005; Schwartz 2004, Chap. 15). This is a new behavior by

comparison with organism ecology, where the most similar

behaviors would be migration and metamorphosis.9

Last, in classical population ecology, populations, once

lost, do not reappear if there is no migration nor dormant

propagule bank in the environment. Thus, N ¼ 0 can be a

biologically stable equilibrium, even when this equilibrium

is described as mathematically unstable, as for instance in

the paradigmatic Lotka-Volterra model - this is a limitation

intrinsic to this formalism, that has been originally devel-

oped to deal with physical problems where small fluctua-

tions always make sense (Jacobs and Metz 2003). With

stem cell populations however, N ¼ 0 is a biologically

unstable equilibrium if there is any dedifferentiation (Niwa

and Ji 2000; Fu et al. 2001; Brawley and Matunis 2004;

Shen et al. 2000). A similar caveat would hold with

transdifferentiation of differentiated cells.

The model being simple and basically describing a

relaxation toward an equilibrium (at the first order, or at the

second order with friction), some structural homogeneity is

expected with existing models in the literature. We can

notice in particular a certain formal homology (partial,

except in cases where we introduce a rmax; see ‘‘Model of a

Limiting Maximal per Capita Growth Rate (rmax)’’ in

Appendix) of the order 1 model with Beverton & Holt’s

model in discrete time (Beverton and Holt 1957; Maynard

Smith and Slatkin 1973; Getz and Kaitala 1989; Getz

1996). This homology explains in particular the analogy

between the qualitative results of our two-species first-

order model with the results of a Lotka-Volterra two-spe-

cies system.

In this work, we focused on the structural stability of our

modeling, by introducing a friction term. A strong friction

makes the system tend towards a first-order behavior:

inertia loses its dynamical importance. In the general

models presented above, friction affects relaxation but not

the equilibrium stability. This will not be the case anymore

in the companion paper.

Our model shows how the same equational form can be

interpreted at the first or the second order (keeping in mind

that the dimension and the meaning of the parameters

change according to the order). At the first order, the sys-

tem describes the growth of an organ, or, in the model with

two species, the potential invasion of an organ by a cellular

strain. At the second order, our model is structurally

identical to that of Ginzburg and Colyvan (2004, p. 44),

modeling the quality of individuals. This structural

homology between first and second order enables to study

8 On this question see in particular Ingber and Jamieson (1985).

9 It is interesting to note a analogy between the dedifferentiation of

stem cells (Niwa and Ji 2000; Fu et al. 2001; Brawley and Matunis

2004) and the transdifferentiation of differentiated cells (Shen et al.

2000) at the intraorganismal level, and the transdifferentiation leading

to the reversion from a reproductive to a juvenile state in the Cnidaria

Turritopsis nutricula (Piraino et al. 1996).
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the importance of the time-scale separation hypotheses

between the individual’s quality (dr=dt) and the population

dynamics (dN=Ndt ¼ r). In effect, starting from Eq. 3, it is

clear that the second-order dynamics can be transformed

into the first-order dynamics of Eq. 1 if we assume that

jdr=dtj ? jfrj, that is, jdr=dtj ? jr=sf j.
The diversity of empirical results in population

dynamics makes it difficult to a priori choose between the

first- and second-order models. Qualitative results of the

first-order model are in concordance with some empirical

results as regards the growth of an organ or of the quality of

a cell (see, e.g., resp. Kooijman 2000, p. 33, Fig. 2.5 and

p. 2, Fig. 1.1). However the second-order model is in

concordance with demographic oscillations (damped,

amplified, or not) and accelerated death observed in

organism ecology (see the review by Ginzburg and Coly-

van (2004, pp. 92–93)), and in intraorganismal ecology

(Corbin et al. 2002; see also companion article, Pocheville

et al. 2014).
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Appendix

Model of a Limiting Maximal Per Capita Growth Rate

(rmax)

Let’s start from Eq. 1:

dN

Ndt
¼ au
N
? m

Here the per capita growth rate tends toward infinity when

NðtÞ=u tends toward zero. If we want to describe such

cases we have to modify the per capita growth rate function

such that it saturates at a maximal value rmax in non-lim-

iting conditions. This saturation is observed in vitro (e.g.,

Norris and Ribbons 1970, p. 263; Yufera and Navarro

1995). We can introduce a simple phenomenological

function:

dN

Ndt
¼ au
N þ bu? m ð10Þ

where b is a scale constant (number of cells by limiting

factor units) introduced to describe the behavior of the per

capita growth rate at small cell densities.

The equation for the maximal per capita growth rate rmax
results from (10) when NðtÞ=u tends toward zero:

rmax ¼
a

b
? m

This equation describes rmax as a limiting factor intrinsic to

the living system, independent from the limiting factor u.

The population tends towards an equilibrium value N?bis
that we suppose approximately equal to N? (this amounts to

positing that the dynamics near the equilibrium is inde-

pendent from the introduced modification on rmax):

N?bis ¼
a

m
? b

? ?
u ? a

m

? ?
u ¼ N?

This leads to a condition on b: b? a=m. This condition

implies m? a=b, that is: rmax[ 0, a condition without

which the model modification cannot make sense.

The behavior of model (1 bis) is very similar to the

classical logistic model (Fig. 9).

Linearized Monospecific First-Order System

See the two species system, with q ¼ 0.

Linearized Monospecific Second-Order System

We have:

d

dt

dN

Ndt

? ?
¼ dr
dt
¼ au
N
? m ? fr

Fig. 9 Comparison between the models without per capita growth

rate saturation (upper curve, Eq. 1) and with saturation (lower curve,

Eq. 10 , see ‘‘Model of a Limiting Maximal per Capita Growth Rate

(rmax)’’ in Appendix). With per capita growth rate saturation, the

model is qualitatively equivalent to Verhulst’s and Lotka-Volterra’s

model. au ¼ 1, bu ¼ 0:5, m ¼ 0:5, nð0Þ ¼ 0:01
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We can write the equation in function of n ¼ lnðNÞ:
d2n

dt2
¼ au

en
? m? f dn

dt

The equilibrium obtains:

en
? ¼ au

m

We consider the behavior near this equilibrium, that is

n ¼ n? þ dn. We have:

d2dn
dt2

¼ ?mdn? f ddn
dt

Changing the variable:

dn ¼ gðtÞe?f2 t

We obtain:

d2g

dt2
¼ g f 2

4
? m

? ?

Noting D ¼ ðf 2=4? mÞ the equation has the following

solutions:

If D\0:

g ¼ A cosðt
ffiffiffiffiffiffiffi
?D

p
Þ þ B sinðt

ffiffiffiffiffiffiffi
?D

p
Þ

dn ¼ e
?f
2
tðA cosðt

ffiffiffiffiffiffiffi
?D

p
Þ þ B sinðt

ffiffiffiffiffiffiffi
?D

p
ÞÞ

The pulsation is given by
ffiffiffiffiffiffiffi
?D

p
.

If D ¼ 0

g ¼ At þ B

dn ¼ e
?f
2
tðAt þ BÞ

If D[ 0

g ¼ A coshðt
ffiffiffiffi
D

p
Þ þ B sinhðt

ffiffiffiffi
D

p
Þ

dn ¼ e
?f
2
tðA coshðt

ffiffiffiffi
D

p
Þ þ B sinhðt

ffiffiffiffi
D

p
ÞÞ ¼ O e

?f
2
tþt

ffiffiffi
D

p? ?

The pseudo-pulsation is given by
ffiffiffiffi
D

p
and the relaxation

time by the inverse of ?f=2.

Linearized Two-Species First-Order System

dN1

N1dt
¼ a1u
N1 þ q2!1N2

? m1

dN2

N2dt
¼ a2u
N2 þ q1!2N1

? m2

Near the equilibrium, we write: n ¼ lnðNÞ and

n ¼ n? þ dðnÞ.

N1 ¼ en1 ¼ en
?
1
þdn1 ¼ en

?
1
ð1þdn1Þ

N2 ¼ en2 ¼ en
?
2
þdn2 ¼ en

?
2
ð1þdn2Þ

We get:

ddn1

dt
¼ a1u

expðn?1ð1þ dn1ÞÞ þ q21 expðn?2ð1þ dn2ÞÞ
? m1

Rearranging, we get:

ddn1

dt
¼ ? expðn?1Þdn1 þ q21 expðn?2Þdn2

a1u
m2

1

and:

ddn2

dt
¼ ? q12 expðn?1Þdn1 þ expðn?2Þdn2

a2u
m2

2

We seek for the eigenvalues of this system. They are the

roots of the characteristic polynomial: X2 ? TX þ D
We set:

B1 ¼
m2

1

a1u
expðn?1Þ

B2 ¼
m2

2

a2u
expðn?2Þ

With these parameters, we get:

T ¼ ?ðB1 þ B2Þ
D ¼ B1B2ð1? q21q12Þ

The determinant D of the characteristic polynomial is given

by:

D ¼ ðB1 þ B2Þ2 ? 4B1B2ð1? q21q12Þ

Thus:

D ¼ ðB1 ? B2Þ2 þ 4B1B2q21q12

Thus D[ 0.

Thus the eigenvalues are:

l ¼ ?ðB1 þ B2Þ ?
ffiffiffiffi
D

p

2

and:

m ¼ ?ðB1 þ B2Þ þ
ffiffiffiffi
D

p

2

¼
?ðB1 þ B2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1 þ B2Þ2 ? 4B1B2ð1? q21q12Þ

q

2

It turns out that m\0 when ð1? q21q12Þ[ 0 and m[ 0

when ð1? q21q12Þ\0.

When m[ 0 the fixed point is unstable. Biologically this

means that competition is too important and one of the two

populations gets excluded, whatever the initial conditions.

If m\0 then the fixed point is stable and the relaxation

time is given by 1=m.
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If m ¼ 0, then q21q12 ¼ 1, which is excluded because N?1
and N?2 would be undefined.

In the case where q21q12 ¼ 1, we are facing three dif-

ferent situations according to the sign of

A1u=m1 ? a2u=ðm2q12Þ: if this term is positive the species

1 wins, if it is negative the species 2 wins, if it is nul, then

coexistence is neutral.

Linearized Two-Species Second-Order Model (Without

Friction)

The calculus is identical to the first-order system, but the

interpretation differs.

When m[ 0 the fixed point is unstable and one of the

two populations is eliminated.

If m\0, then dn1 and dn2 follow superimposed inde-

pendent oscillations of pulsations
ffiffiffiffiffiffiffi?lp

and
ffiffiffiffiffiffi?mp

.

Linearized Two-Species Second-Order System (with

Friction)

We consider the case where f1 ¼ f2 ¼ f . The behavior of

the system is given by the Z such as:

X ¼ Z2 þ fZ

where X ¼ l or m.
Z is thus given by:

Z ¼ 1

2
?f ?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ 4X

p? ?

If m[ 0, we have a Z[ 0 and the system is thus

unstable.

If m\0, the system is stable. There are several possible

regimes: if X\ ? f 2=4, the associated component to X will

be pseudoperiodical. If X ¼ ?f 2=4, then this component

will be critical. If X[ ? f 2=4, the the component will be

aperiodical. The behavior of dn1 and dn2 will be given by a

superimposition of the behaviors associated to the two

eigenvalues.

If m ¼ 0, the system is unstable and diverges linearly, with

in addition an oscillatory component (see ‘‘Linearized Two-

Species Second-Order System (with Friction)’’ in Appendix).
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Bailly F, Longo G, Montévil M (2011) A 2-dimensional geometry for

biological time. Prog Biophys Mol Biol 106:474–484

Berryman AA (1992) The origins and evolution of predator-prey

theory. Ecology 73:1530–1535

Beverton R, Holt S (1957) On the dynamics of exploited fish

populations. fisheries investigation series 2, vol. 19, uk ministry

of agriculture. Fisheries, and Food, London

Billy F, Ribba B, Saut O et al (2009) A pharmacologically based

multiscale mathematical model of angiogenesis and its use in

investigating the efficacy of a new cancer treatment strategy.

J Theor Biol 260:545–562

Brawley C, Matunis E (2004) Regeneration of male germline stem

cells by spermatogonial dedifferentiation in vivo. Science

304:1331–1334

Brown SP, Le Chat L, Taddei F (2008) Evolution of virulence:

triggering host inflammation allows invading pathogens to

exclude competitors. Ecol Lett 11:44–51

Cairns BJ, Timms AR, Jansen VA et al (2009) Quantitative models of

in vitro bacteriophage-host dynamics and their application to

phage therapy. PLoS Pathog 5:e1000,253

Cairns J (1975) Mutation selection and the natural history of cancer.

Nature 255:197–200

Cavazzana-Calvo M, Lagresle C, Hacein-Bey-Abina S, Fischer A

(2005) Gene therapy for severe combined immunodeficiency.

Annu Rev Med 56:585–602

Corbin IR, Buist R, Volotovskyy V et al (2002) Regenerative activity

and liver function following partial hepatectomy in the rat using

31p-mr spectroscopy. Hepatology 36:345–353. doi:10.1053/

jhep.2002.34742

Fig. 10 Two-species second-order model with friction, case of a

linear divergence in the critical case. m ¼ 0, au ¼ 1:5, m ¼ 2,

f ¼ 0:1, q21 ¼ q12 ¼ 1, n1ð0Þ ¼ 1:2, dn1=dtð0Þ ¼ 0, n2ð0Þ ¼ 1:2,

dn2=dtð0Þ ¼ 0:3, with n ¼ lnðNÞ (See ‘‘Linearized Two-Species

Second-Order System (with Friction)’’ in Appendix)

Ecological Models for Gene Therapy 411

123

http://dx.doi.org/10.1053/jhep.2002.34742
http://dx.doi.org/10.1053/jhep.2002.34742


Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density

dependence and the allee effect. Trends Ecol Evol 14:405–410

Dingli D, Offord C, Myers R et al (2009) Dynamics of multiple

myeloma tumor therapy with a recombinant measles virus.

Cancer Gene Ther 16:873–882

Etienne R, Wertheim B, Hemerik L et al (2002) The interaction

between dispersal, the allee effect and scramble competition

affects population dynamics. Ecol Model 148:153–168

Fu X, Sun X, Li X, Sheng Z (2001) Dedifferentiation of epidermal

cells to stem cells in vivo. Lancet 358:1067–1068

Gerecht-Nir S, Cohen S, Ziskind A, Itskovitz-Eldor J (2004) Three-

dimensional porous alginate scaffolds provide a conducive envi-

ronment for generation of well-vascularized embryoid bodies from

human embryonic stem cells. Biotechnol Bioeng 88:313–320

Getz WM (1996) A hypothesis regarding the abruptness of density

dependence and the growth rate of populations. Ecology

77:2014–2026

Getz WM, Kaitala V (1989) Ecogenetic models, competition, and

heteropatry. Theor Popul Biol 36:34–58

Ginzburg LR (1992) Intuitions and the logistic equation—reply from

L. Ginzburg. Trends Ecol Evol 7:316–317
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