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Abstract

We propose a conceptual and formal characterisation of biological organisation as a closure of
constraints. We first establish a distinction between two causal regimes at work in biological
systems: processes, which refer to the whole set of changes occurring in non-equilibrium open
thermodynamic conditions; and constraints, those entities which, while acting upon the processes,
exhibit some form of conservation (symmetry) at the relevant time scales. We then argue that,
in biological systems, constraints realise closure, i.e. mutual dependence such that they both
depend on and contribute to maintaining each other. With this characterisation in hand, we
discuss how organisational closure can provide an operational tool for marking the boundaries
between interacting biological systems. We conclude by focusing on the original conception of the
relationship between stability and variation which emerges from this framework.
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1. Introduction

In Theoretical Biology, an enduring tradition has placed heavy emphasis on the idea that
biological systems realise what could be referred to as “self-determination”. That is, in very general
terms, the capacity of a system’s constitutive organisation to contribute to the determination and
maintenance of its own conditions of existence through the effects of its activity (see also Mossio
& Bich|(2014), for more details). Usually (Weber & Varela, 2002)), the origin of this tradition is
traced back to the characterisation of biological systems as “self-organising”, as Kant proposed in
his Critique of Judgement (Kant, 1790). Over the last two centuries a number of authors, more or
less explicitly inspired by Kant, have been proposing conceptual and theoretical accounts aimed at
understanding the principles underlying biological self-determination.

Following Claude Bernard’s seminal work (Bernard, [1865, |1878), during the first half of
the 20th century self-determination was initially investigated as homeostasis (Cannon, 1929) and
mathematically expressed in terms of feedback loops by first-order Cybernetics (Wiener, (1948
Ashby etal., 1956). Homeostasis, however, is a general systemic capacity, exhibited by both biological
organisms and some artefacts (as the classical example of the thermostat shows). Accordingly, recent
contributions have aimed at going beyond the limitations of the notion of homeostasis in order to
better capture the specificities of biological self-determination. In this respect, relevant contributions
were made during the 1960s by embryology (Weiss, [1968)). Waddington, in particular, suggested
that in the biological domain homeostasis should be interpreted as homeorhesis (stability of dynamics
rather than stability of states), insofar as in biological systems what “is being held constant is not a
single parameter but is a time-extended course of change, that is to say, a trajectory” (Waddington,

1968 p.12).
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A crucial step in the theoretical elaboration of biological self-determination is the account put
forward by Piaget (Piaget, |1967), whose core idea is to integrate in a single coherent picture two
inherent dimensions of biological systems: thermodynamic openness and organisational closure.
On the one hand, biological systems are, as von Bertalanfly (von Bertalanfty, 1952) had already
emphasised, thermodynamically open (dissipative) systems, traversed by a continuous flow of matter
and energy; yet on the other, they realise c/osure, which refers to mutual dependence between a
set of constituents which could not exist in isolation, and which maintain each other through
their interactions. In Piaget’s view, biological self-determination is specifically related to closure
which, through the association between division of labour and mutual dependence that it implies,
captures a fundamental aspect of the idea of “organisation” as such. In a word, biological systems
self-determine because they are organised, and they are organised because they realise closure.

The centrality of organisational closure and its connection to organisation, as well as its dis-
tinction from (and complementarity to) thermodynamic openness, have become givens in most
subsequent accounts of biological self-determination (Letelier et al., 2011). One of the best known
formulations is the one centred on the concept of autopoiesis (Varela et al., 1974; Varela, 1979)
which, among other aspects, emphasises on the generative dimension of closure: biological systems
self-determine in the specific sense that they “make themselves” (auto-poiein). Precisely because of
their dissipative nature, the components of biological systems are maintained only insofar as they
maintain and stabilise not just some internal states or trajectories, but the autopoietic system itself, as
an organised unityﬂ

In spite of its qualities, however, the concept of autopoiesis (and related computational models,
see McMullin (2004)) suffers in our view from a central weakness, insofar as it does not provide
a sufficiently explicit characterisation of closure. Biological systems are at the same time both
thermodynamically open and organisationally closed, but no details are given regarding how the
two dimensions are interrelated, how closure is actually realised, what constituents are involved,
and at what level of description. In the absence of such specifications, as already highlighted by
previous critical interpretations of the autopoietic theory (see in particular Fleischaker| (1988);
Ruiz-Mirazo & Moreno| (2004)), it remains unclear in what precise sense closure would constitute
a causal regime which distinctively characterises biological organisation and its capacity for self-
determination. In particular, closure might be generically understood as a causal regime involving
some sort of circularity, fundamentally no different from the numerous examples of circular chains
of transformations, that frequently occur in the natural (although not necessarily biological) world.
Is there some principled difterence between biological closure and all other kinds of causal cycles ?

A concerted attempt to answer this question has been made by Robert Rosen, who has explicitly
claimed that a sound understanding of biological organisation should account for the distinction
between closure and openness in terms of a distinction between two causal regimes. In Life Itself
(Rosen, [1991), Rosen’s account of closure is based on a reinterpretation of the Aristotelian categories
of causality and, in particular, on the distinction between efficient cause and material cause. Let
us consider an abstract mapping f between the sets A and B, so that f : A - B. If we interpret
the mapping in causal terms, and look for the causes of B, Rosen claims (and develops a detailed
conceptual and formal justification, that we will not repeat here) that A is the material cause of B,
while f is the efficient cause. By relying on this distinction, Rosen’s central thesis is that: “a material
system is an organism [a living system] if, and only if; it is closed to efficient causation” (Rosen,
1991, p. 244). In turn, a natural system is closed to efficient causation if, and only if, all components
having the status of efficient causes within the system are materially produced by the system itself.

An analysis of Rosen’s account in all its richness would by far exceed the scope and limits of
this paper. Let us just mention that, recently, several studies have made substantial contributions to
re-examining, interpreting and developing Rosen’s ideas (Piedrafita et al., 2010; Letelier et al., 2003}

3The generative nature of closure seems to adequately encompass one of the main differences between biological
systems on the one hand, and artefacts and other categories of natural systems on the other. Intuitively, it seems correct
that those situations in which the existence of the parts depends on that of the whole system are indeed characteristic of
biological organisms. The parts of a rock do not dissolve if the whole is broken into pieces, just as the components of a
computer do not disintegrate if the whole machine is disassembled.



2006; [Wolkenhauer & Hofmeyr, 2007). What matters for our present purposes is that closure,
and therefore self-determination, is located at the level of efficient causes: what constitutes the
organisation is the set of efficient causes subject to closure, and its maintenance (and stability) is the
maintenance of the closed network of efficient causes.

In this paper, we develop an account of organisational closure which is directly inspired by
and, we believe, consistent with the theoretical framework established by Rosen. Nevertheless,
although Rosen made clear progress in the understanding of biological organisation with respect to
previous formulations, we believe that his characterisation of closure is not fully satisfactory. The
main limitation is that it remains too abstract, and therefore hardly applicable as a guiding principle
for biological theorising, modelling and experimentation. Closure is defined by Rosen as involving
efficient causes but, without additional specifications, it might be difficult to identify efficient causes
in the system: what entities actually play the role of efficient causes in a biological system? How
should the relevant level of causation at which self-determination occurs be characterised?

To deal with this issue, decisive insights have emerged from more recent literature which
emphasise, in line with Piaget’s initial view, the “thermodynamic grounding” of biological systems
(Bickhard, |2000; (Christensen & Hooker, 2000; Moreno & Ruiz-Mirazo, [1999). In particular,
Stuart Kauffman (Kauffman| [2002) suggests retrieving the classic idea of “work cycle” (in the sense
of the Carnot engine), and applying it within the context of self-maintaining biochemical reactions.
Based on Atkins’s ideas about work, conceived as a “constrained release of energy” (Atkins|, 1984),
Kauffman argues that a circular relationship between work and constraints must be established in
a system in order to achieve self-determination, in the form of a “work-constraint (W-C) cycle”.
When a (W-C) cycle is realised, constraints which apply to the system are not independently given
(as in the Carnot engine) but rather are produced and maintained by the system itself. Hence, the
system needs to use the work generated by the constraints in order to generate those very constraints,
by establishing a mutual relationship, i.e. a cycle, between constraints and work.

In a fundamental sense, the account of closure that we provide in this paper lies at the intersection
between Rosen’s and Kauftman’s proposals. In particular, our central thesis is that organisational
closure should be understood as closure of constraints, a regime of causation which is at the same
time distinct from - and related to - the underlying causal regime of thermodynamic openness. It is
important to underline that our purpose is by no means to provide a mode/ of closure which would
adequately capture the complexity of real biological systems. Rather, we conceive this paper as a
contribution to characterise in precise terms some of the general features of closure, which might
subsequently be used to develop models of biological organisation. Our aim, in other words, is to
explicitly state what makes closure a distinctive causal regime, characteristically at work in biological
system

'The structure of the paper is as follows. In section 2} we specify the main idea which underpins
our characterisation of closure. In particular, we put forward an understanding of biological self-
determination in terms of spatio-temporally localised constraints exerted on physical and chemical
processes. In section 3} we develop specific theoretical and formal criteria for drawing a distinction
between constraints and processes, which correspond to two regimes of causation. Section {4 goes
one step further, by elucidating how the idea of dependence among constraints should be conceived
in the biological domain. Section [b|introduces closure, as the specific case of mutualdependence
between a set of constraints. Section [6] provides a preliminary account of how closure can be
used to draw boundaries between interacting biological systems. Finally, in the conclusion, we
briefly discuss how the present framework conceives the relations between invariance and variation,
between stability and change in biological phenomena.

“The question of whether or not closure is a necessary and sufficient condition for characterising biological systems is
not discussed here. Consequently, we do not explore the possibility that some specific classes of non-biological natural
systems (such as, for instance, complex chemical systems) might be pertinently said to realise closure. For a discussion of

this issue, see|Mossio & Bich|(2014).



2. Biological determination as self-constraint

'The main aim of this paper is to understand organisational closure in terms of the mutual
dependence which exists among a set of entities that fulfil the role of constraints within a system.

What do we mean by constraints? In contrast to fundamental physical equations and their
underlying symmetries, constraints are contingent causesﬂ exerted by specific structures or dynamics,
which reduce the degrees of freedom of the system on which they act. As additional causes,
they simplify (or change) the description of the system, and enable an adequate explanation of its
behaviour to be provided, an explanation which might otherwise be under-determined or wrongly
determined.

In describing physical and chemical systems, constraints are usually introduced as external
determinations (boundary conditions, parameters, restrictions on the configuration space, etc.),
which contribute to determining the behaviour and dynamics of a system, although their existence
does not depend on the dynamics on which they act (Pattee, 1972} (1973). To take a simple example,
an inclined plane acts as a constraint on the dynamics of an object sliding or rolling on it, whereas
the constrained dynamics (the sliding) do not play a causal role in producing and/or maintaining
the plane itself. In some cases, however, the constrained dynamics do play a role in determining the
conditions of existence of (a subset of) the constraints acting on them; in some specific circumstances,
in particular, the existence of each constraint depends on the existence of the others, as well as on
the action that they exert on the dynamics. In this kind of situation, the set of constraints realises
self-determination as organisational closure.

'The idea behind this conception of closure is that biological self-determination occurs in the
form of self~constraint. Like all open systems, be they physical or chemical, biological systems are
traversed by a flow of energy and matter, which takes the form of processes and reactions occurring
in open thermodynamic conditions. In this respect, organisms do not differ, qualitatively, from
other natural thermodynamically open systems. At the same time, however, one of the specificities
of biological systems is the fact that the thermodynamic flow is constrained and canalised by a
set of constitutive constraints in such a way as to establish a specific form of mutual dependence
between those very constraints. Accordingly, the organisation of the constraints can be said to
achieve self-determination as self-constraint, since the conditions of existence of the constitutive
constraints are, because of closure, mutually determined within the organisation itsehﬁ

In this paper, we base the theoretical and formal characterisation of closure on the concept
of symmetry (see for example Weyl (1983);|Goodman & Wallach|(2009)). In very general terms,
symmetries refer to transformations that do not change the relevant aspects of an object: symme-
tries and invariants (of energy, momentum, electrical charges, etc.) are therefore complementary
concepts, both mathematically and physically. In describing an object, symmetries are relevant
in relation to different aspects, which might not be spatial in the intuitive sense. For example,
the notion that two replicates of an experiment correspond to the same kind of situation relies on
an assumption of symmetry between their respective behaviours. Another example comes from
classical electromagnetism, in which the transformation that inverts all charges (changing positive
charges to negative ones and vice versa) does not alter the resulting behaviour, and can therefore
be understood as a symmetry of the equations involved. In mathematical approaches to natural
phenomena, symmetries justify the theories formulated (Van Fraassen, |1989; Bailly & Longo, |2011;
Longo & Montévil, 2014). In particular, symmetries are at the core of the constitution of scien-
tific objects: they ground their theoretical and mathematical characterisation (by defining their
description space) and make it possible to write equations describing their behaviour (i.e. their
specific trajectory) in those situations in which the values of the parameters and initial conditions
are specifie

SWhile fundamental symmetries in physics are theoretical hypotheses that are always valid in principle, and therefore
do not need a cause, biological constraints do require a cause (typically an object, such as an inclined plane).

6The idea of self-constraint is highly reminiscent and elaborates on the idea of self-construction put forward by
Ruiz-Mirazo and Moreno in their analysis of basic autonomy (Ruiz-Mirazo & Moreno, 2004).

"There are many mathematical types of theoretical symmetries. For instance, they can have a statistical nature, as in



The theoretical characterisation of closure as a specific kind of symmetry provides, we submit, a
principle for understanding the szabilisation of biological phenomena. One of the authors of this
paper has recently argued (Longo & Montévil,|2011,[2014) that biological systems can be understood
in terms of “extended critical transitions”, which mean that they form coherent structures, whose
propeﬂ symmetries are inherently unstable. Biological symmetries may change unpredictably, both
at the individual and evolutionary scale. In contrast to the role played by theoretical symmetries in
the mathematical and theoretical definition of physical objects, their instability in the biological
domain underlies the fundamental contextuality, variability and historical nature of biological
phenomena. In the light of these background assumptions, it follows that theoretical symmetries in
biology are contingent and can have only a limited temporal range of applicability.

'The theoretical framework developed in this paper aims to complement this picture by exploring
how biological symmetries can display some degree of stabilisation at the relevant temporal and
spatial scales. Constraints correspond to theoretical symmetries that are local, in the sense of being
stable at limited temporal and spatial scales. These symmetries are related to specific dynamics and
structures which constitute biological systems, and which are usually investigated (theoretically and
experimentally) by biological science. For its part, organisational closure refers to the encompassing
causal regime through which constitutive constraints achieve further stabilisation. Given that, ex
hypothesi, biological symmetries are unstable, biological systems achieve self-determination insofar
as organisational closure involves their stabilisation in the long run. As such, closure is at the core
of the very constitution of biological phenomena as scientific objects.

We will come back to the relations between stability and variation in our framework in the
conclusion section. Now, let us develop the notion of constraints in more explicit conceptual and
formal terms.

3. Constraints and processes

'The characterisation of closure relies on a theoretical distinction between two different regimes
of causation, which we propose to ground in terms of a distinction between processes and constraints
(exerted on the processes).

In a general sense, processes refer to the whole set of changes (typically physical processes,
chemical reactions, etc.) that occur in biological systems and involve the alteration, consumption,
production and/or constitution of relevant entities. Constraints, on the other hand, refer to entities
which, while acting upon these processes, can be said from the appropriate viewpoint to remain
unaffected by them. A given theoretical entity, as we will see, cannot be qualified as a constraint per
se, but only in relation to a specific process and the relevant time scale at which this process occurs.
This context- and scale-dependence is, in our view, a general feature of constraints. In this section,
we suggest defining constraints as entities which exhibit a symmetry with respect to a process (or a
set of processes) that they help stabilise. More formally:

Definition 1 (Constraint) Given a process A —> B (A becomes B), C is a constraint on A— B, at a
specific time scale T, if and only if the following two conditions are fulfilled:

I The situations A—> B and Ac — B (i.e. A—> B under the influence of C ) are not, as far as B
is concerned, symmetric at a time scale T.

Note C4 _, g those aspects of C which play a role in the above asymmetry between A — B
and Ac — B at time scale 7.

the case of statistical mechanics, which assume that all microstates with the same energy are symmetric, in the specific
sense of having the same probability. Similarly, in quantum mechanics, two systems in the same state will only yield
the same measurement (and thus be equivalent) accordance with a statistical distribution. In both cases, the theoretical
symmetry refers to transformations which, on principle, leave relevant features of the object invariant.

8By “proper” symmetries we mean those theoretical symmetries which ground the characterisation of biological
systems as specific scientific objects.



1I/ A temporal symmetry is associated with all aspects of C o __, g with respect to the process Ac — B,
at time scale T.

Conditions [I| and [II| can be met after (properly justified) quantitative approximationﬂ The
situation which fulfils conditions will be expressed as A — B (7) or, in an expanded graphical

form, as:

T A——oe— B

: C
o
|
|
|
|

Let us now discuss each of these conditions, and the motivation behind them. We will refer
to two concrete examples: the action of the vascular system on the flow of oxygen, and that of an
enzyme on a chemical reaction.

I/ 'The first condition requires that a constraint exerts a causal role on the target process. In
formal terms, we express this by stating that the situations with or without the constraint are
diﬂ%renﬂ (asymmetric). This must be true when considering the effects of the constraint
rather than its mere presenc

Consider the vascular system. There is an asymmetry between the flow of oxygen when
considered under the influence of the vascular system (Ac — B¢) and when not (A — B)
since, for instance, Ac — B occurs as a transport canalised to the neighbourhood of every
cell, whereas A — B has a diftusive form. Consequently, the situation fulfils condition
with the vascular system playing a causal role in the flow of oxygen.

Similarly, there is an asymmetry between a chemical reaction when considered under the
influence of an enzyme (Ac — B¢) and when not (A — B) since, typically, Ac — B¢
occurs faster than A — B.

II/ A constraint, while it changes the way in which a process behaves, is not altered by (i.e.
is conserved through) that process at the scale at which the latter takes place. The second
condition captures this property by stating that C or, more precisely, those aspects C4 _, g by
virtue of which the constraint exerts the causal actiorﬁ exhibits a symmetry with respect to
the process involving A, B and C.

Again, let us consider the examples. A temporal symmetry is associated with the vascular
system C with respect to the transformation Ac — B since, among other things, zhe spatial
structure of the vascular system remains unaltered at the time scale required to accomplish
the transport of oxygen molecules from the lungs to the cells. Hence, the situation fulfils
conditions [lI} which means that the relevant aspects C 4 _, p (here, the spatial structure) are
conserved during the process of oxygen transport.

Similarly, a temporal symmetry is associated with the configuration of an enzyme, which is
conserved during the reactio Note that at time scales shorter than 7, an enzyme does
undergo alterations insofar as it binds to the substrate. The symmetry is respected only

9 Approximations are a standard mathematical tool in physics and chemistry. To take a simple example, although
protons disintegrate spontaneously in the (very) long run, chemistry can justifiably consider them as conserved at shorter
time scales.

10The impact can be deterministic, probabilistic, or even of a more sophisticated nature, depending on the theoretical
description of the considered process.

1This condition is formally important because it would otherwise be trivially true that a situation A— B and a
situation A — B with C are different, simply because the new object C has been added. However, the presence of C
does not necessarily change anything for the objects present only in the first situation (A and B), since this depends on
whether or not they interact with C in a relevant way.

12Tn what follows, we will generically use the notation C instead of C4 _, s whenever this does not give rise to confusion.

13Note that the concentration, nature and spatial distribution, etc., of the population of enzymes are also preserved
during the reaction (see also below for more details on this point).



by considering the whole process at 7, when the enzyme unbinds and returns to its initial
configuration.

Since they meet the two conditions, both the vascular system (with respect to oxygen transport)
and enzymes (with respect to the catalysed reaction) can be considered constraints within the
organism.

It is of fundamental importance to emphasise that each condition is met only at the relevant time
scale and, in particular, that the time scale 7 at which conditions E] and |[If must be fulfilled is the
sam A constraint, to be such, must conserve its relevant aspects at the same time scale at which
its causal action is exerted, even though changes and alterations may occur at shorter and/or longer
time scales. Indeed, it is precisely decause of their conservation that constraints are able to exert
their causal power. Consider our two examples. The structure of the organism’s vasculature does
not change at those time scales at which it channels the flow of oxygen; yet, the structure of the
system does change at longer time scales due to the effects, for example, of neovascularisation. The
same holds true for enzymes, which are conserved at the time scale of catalysis, while decaying and
randomly disintegrating at longer scales. Moreover, as mentioned above, enzymes also undergo
alterations at shorter time scales (since they bind with the substrate and lose or gain electrons,
protons, etc.) and are then restored when catalysis is achieved.

'The key role of time scales in the definition of constraints should not obscure the fact that the
specific definition of a constraint uses other aspects also, such as the spatial scale. Indeed, in order
to adequately characterise processes, and the constraints acting on them, one must consider the
relevant system, and hence the relevant quantity of space (extension, volume, etc.). For example,
it is necessary to consider a system large enough to include the flow of oxygen and the topology
of the vascular system (thus, it must be a system of at least the same size than the vascular system
itself). However, while it is of course true that constraints do depend on spatial scales, we maintain
that this scale does not play a specific role in characterising constraints in the sense that, on a first
approximatio variations in the spatial scale do not affect the symmetries which define them. In
contrast, constraints are altered when the temporal scale varies. The proper symmetries of biological
constraints can be broken over time and, therefore, must be actively maintained or rebuilt within
the system (which, as we will see, leads to organisational closure). Moreover, as mentioned in the
Introduction, constraints may be reorganised in unpredictable ways over time (Longo et al., 2012a).

A similar point holds true for the levels of description, which can be roughly thought of as
the degree of “detail” or “granularity” with which a situation is described at some temporal and
spatial scales. In many cases, an equivalence can be drawn between the descriptions of constraints
at different levels. For instance, the vascular system can be described as a smooth surface forming a
tube (its topology) or as a collection of cells clustered together in a specific way (with the same “tube”
topology). Some levels of description may be more suitable than others for explanatory reasons;
and yet, the proper symmetries of the constraints do not vary — again, on a first approximation

1#A time scale is a characteristic time associated with a dynamics. In other words, it is a quantity which has the physical
dimension of a time and represents the pace of a dynamics. From a more technical viewpoint, a time scale is typically (but
not exclusively) obtained by exhibiting a decreasing exponential f - exp(—£/T) associated with the process (for example
describing the return to equilibrium of the process after a perturbation). The time scale is then 7, which characterises the
time window in which the relevant aspects take place. In particular, a time scale is not necessarily associated with the
overall duration of the process that, in some cases, can last for arbitrarily large time windows. Consider, for instance, the
enzyme lactase in a bacterium and assume that there are stationary fluxes of lactose that are constrained by this enzyme.
These fluxes can last for an arbitrarily long time, yet their time scale is determined by the time required to digest a given
quantity of lactose inside the cell. In the case of the vascular system, the blood circulation time (i.e. the time needed on
average for blood to travel from one atrium of the heart to the rest of the organism via the lungs and the other atrium
and back to the same atrium) can be used to obtain the relevant time scale. Note that the time scale depends on the
specific definition of B, in particular in those cases in which different viewpoints are possible. For example, one can focus
on a single segment of a vein (or an artery), in which case the process would be the displacement of oxygen from one
side of the segment to the other, and the time scale would be the time (given by the speed of blood X the length of the
segment) required for such a displacement.

1By this we mean that, in the general case, the proper symmetries of the constraints do not depend on the spatial
scale. However, this may indeed be the case in some specific situations that are not discussed in this paper.

18One may think of situations in which some symmetries are observed only at some levels of description. We have no



— when different levels of description are considered. Accordingly, levels of description do not play
a specific role in the characterisation of constraints and are therefore not included in the definition.
Because of their capacity to exert a causal influence on the thermodynamic flow without being
influenced by that flow, constraints have, from a thermodynamic perspective, very special features.
A description of the causal role of constraints in terms of thermodynamic exchanges may possibly
be relevant to understanding the intermediate steps leading to the effect (such as the sequence of
alterations of an enzyme during catalysis), but would be irrelevant to understanding the overall
effect, which does not involve a flow between the constraint (or more precisely, its relevant aspects
as mentioned in the definition) and the constrained process or reaction.
Before moving on, let us first discuss two significant theoretical and epistemological issues, both
related to the characterisation of the causal role of constraints.
'The first one concerns the fact that, following our definition, a constraint alters the behaviour
of a process although, strictly speaking, it does not lead in many cases to new possible behaviours
More technically, when the set of possibilities are determined by
conserved quantities, the latter cannot be altered by fluxes coming from constraints, which are
themselves, by definition, conserved through (i.e. are symmetric with regard to) the process. For
instance, a constraint does not play a role in the balance equation of a given chemical reaction, an
equation which is based on the conservation of matter (i.e. the conservation of the quantity of every
type of atom and electron). That chemical reaction would therefore be possible in principle, but so
slow (or, from a molecular viewpoint, so unlikely) that it would require centuries to take place, and
would be quantitatively irrelevant. The causal role of constraints (here, like enzymes) is to accelerate
the reaction enough to actually achieve the result at a shorter (and biologically relevant) time scale.
By claiming that, in many cases, constraints do not generate new possibilities for the constrained
processes, the above remark explicitly suggests that constraints are mostly Zimiting, insofar as they
canalise (condition [I)) the constrained processes toward a specific outcome from among a set of
already possible ones. At first glance, this characterisation seems to diverge from related analyses of
the role of constraints in explaining biological organisation. In particular, as Juarrero|(1999) has
pointed out, the constraints at work in biological systems are generative, in the sense that they enable
behaviours and outcomes that would otherwise be impossible. Is there a theoretical disagreement
here? We believe the distinction between limiting and generative constraints corresponds to a
difference in the time scale at which their causal effects are described. We maintain that the
constrained dynamics or outcomes could in most biological cases occur in an unconstrained way at
the relevant (very long, or infinite) time scale; yet, at biological (shorter) time scales, constraints
are indeed required in order to actually achieve these specific dynamics and outcomes because they
contribute to producing otherwise improbable (or virtually impossible) effects. In particular, each
constitutive constraint within a biological organism enables the maintenance of other constrains as
well as, because of closure, the whole system. As a result, although constraints are mostly limiting

for the constrained process

at longer time scales, they can be pertinently conceived as generative at shorter time scales: in
this sense, this characterisation is perfectly consistent with our account that claims that biological
organisation could not exist without the causal action of constraints.

principled objection to this possibility, which would amount to the realisation of “strong” emergence among the levels.
However, we do not consider this situation to be the general one, and leave the analysis of such specific cases for a future
paper. See Mossio et al.[(2013) for a general philosophical discussion of emergence in relation to biological organisation.
See also|Longo et al.| (2012b) for an analysis of a class of situations in which systems cannot be analysed at a single level,
because of mathematical singularities and because the relevant symmetry lies bezween different levels of descriptions.

7Note that the distinction between “possible” and “impossible” situations may sometimes be fuzzy insofar as different
theoretical frameworks can be used to account for the same phenomena (as long as they lead to trajectories that are
quantitatively similar). Typically, situations that are impossible in one framework might become possible in another, in
which case these discrepancies have very small probabilities, to the extent that they have no experimental or practical
relevance (which enables the two viewpoints to be compatible). For example, from the viewpoint of statistical mechanics
the space of macroscopic possibilities may be huge, even though some (most) of them have negligible probabilities, while
the thermodynamic viewpoint is mostly deterministic and therefore has a reduced macroscopic space of possibilities.
Technically, in statistical mechanics a huge set of macroscopic configurations are possible, but the probabilities of most of
them are tiny.



The second issue is related to our understanding of the causal role of constraints stemming
from the conjunction of conditions[l|and [T, Condition[[I|stipulates that, at 7, the relevant aspects
C 4 —, p of the constraint are conserved during the constrained process. As discussed above, a flow
from the constraint to the process would deplete a state function of the constraint (with respect
to the constrained process), which is forbidden by definition. In short, there is no flow of matter
H or (free) energy (or any conserved quantity) between C4 _, g and A — B. Yet, according to
condition[I} at T constraints play a causal role in the process. How is such a role to be conceived
in this framework? How can constraints be conserved and yet at the same time play a causal role?
In our view, constraints do not produce their effects by transmitting energy and/or matter to the
process, but rather by canalising and harnessing a thermodynamic flow, without being subject to
that flow. Accordingly, the vasculature channels the blood flow, and the enzyme provides an easier
energy path for a reaction.

Even in those cases in which functional constraints, prima facie, appear (see footnote |18 above)
to transmit energy, we hold that they do in fact channel an energy transfer while being conserved.
Consider the example of the heart which, according to the usual description, “pumps the blood™: is
this a case of a macroscopic constraint which contravenes our definition because it transmits kinetic
energy to the blood? In our view, such a conclusion stems from an incorrect description of the
constraints involved. To see why, let us decompose the situation in which “the heart gives kinetic
energy to the blood”. Under the initial conditions, blood is located at some point in the body and
energy is stored, in a chemical form, in the cardiomyocytes. After pumping (our target process),
blood circulation is accelerated and the cardiomyocytes have produced chemical waste. This rough
decomposition shows that “the heart”, understood as a region of space inside the organism, in
fact includes entities (both the blood’s hydrodynamic state and the cardiomyocytes) which, in our
framework, should be considered processes. What then are the relevant constraints? In this situation,
the constraints are the elements of the complex multiscale structure of the heart that channel
the transfer of the cardiomyocytes’ chemical energy to the blood’s kinetic energy. These elements
include (among others) the relevant components of the cardiac cells (mitochondria, sarcomeres,
myofibrils), which transform chemical energy into mechanical forces, the geometric architecture
of the heart and its electric conduction structure that macroscopically shapes these forces both
spatially and temporally. All these entities remain approximately (see note [J|above) conserved after
a heart beat, while constraining the release of chemical energy. In short, we could refer to it as
the “architecture” of the heart at this time scale, and claim that such an architecture constrains the
transformation of the chemical energy (A) of cardiomyocytes into the kinetic energy of the blood
(B).

The central outcome of the theoretical distinction between constraints and processes is a dis-
tinction between two regimes of causation. For a given effect of a process or reaction, one can
theoretically distinguish, at the relevant time scale, between two causes: the inputs or reactants (in
Rosen’s terms, the “material” causes) that are altered and consumed through the process, and the
constraints (the “efficient” causes, at T), which are conserved through that very process. Insofar
as they are irreducible to the thermodynamic flow, and then to the material inputs or reactants,
constraints constitute a distinct regime of causation.

4. Dependence

Organisational closure occurs in the specific case of mutual dependence between (at least some
of) the constraints acting on a biological system. Before discussing closure as such, let us first focus
on the relationship of dependence between constraints.

18Tn order to fit this definition, it is not enough that a flow be compensated by another process. However, there may be
a temporary change of the constraint if the corresponding (algebraic) quantity is given back to the constraint before the
end of the process. For example, consider ATP. ATP is not a constraint for a reaction that uses its energy (it is consumed):
however, it is a constraint for the transformation and transport of the energy of glycolysis (or another reaction) to a target
reaction, since this process leaves ATP invariant.



In the previous section, constraints are defined as entities which, at specific time scales, are
conserved (symmetric) with respect to the process, and are therefore not the locus of a transfer.
However, constraints are typically subject to degradation at Jonger time scales, and must be replaced
or repaired. When the replacement or repair of a constraint depends (also) on the action of another
constraint, a relationship of dependence is established between the two.

. . Cy .. .
Let us consider a constrained process A; — Bj (77). Because of condition [II} there is a time
symmetry at scale 7 associated with Cy, which concerns those aspects which are relevant for the

process that is constrained. At the same time, C is the product of another constrained process
G . . .
Ay — Cq (1p), at a different time scale. At scale 75, C, plays the role of constraint, whereas C;

e C,
does not, since it is the product of the process Ay — Cj.

scale : G,
T2 A 4i—> Gy
T] i Al 4i—> Bl

This situation establishes a dependence between constraints in which constraint C; depends on
constraint Cy.

Definition 2 (Dependence between constraints) Following the above line of reasoning, we define a
relationship of dependence between constraints as a situation in which, given two time scales T and
Ty considered jointly, we have:

1. Cy is a constraint at scale T4,

2. There is an object Cy which at scale Ty is a constraint on a process producing aspects of C1 which are
relevant for ifs role as a constraint at scale Ty (i.e. they would not appear without this process).

In this situation, we say that Cq is dependent on Cy, and that C, is generative for Cy.

By way of example, let us consider the production of an enzyme. As discussed above, an enzyme
acts as a constraint on the reaction it catalyses. In turn, enzymes are themselves produced by and
within the cell, through the translation process: ribosomes build the primary sequence of the future
protein on the basis of the messenger RNA (mRNA) sequence, without consuming it. Since the
ribosomes and the mrNa play a causal role while being conserved during this process, they both
act as constraints (at a specific time scale) on the production of the enzyme. Consequently, the
relationship between the enzyme, the ribosomes and the mrNA can be pertinently described as a
dependence between constraints (in which the enzyme depends on both ribosomes and mrNa),
insofar as all of these entities satisfy the definition of constraint at specific time scales, which are
considered jointly.

Let us examine some relevant implications of the above definition.

Firstly, a dependence between constraints is conceptually different from dependence between
processes, which corresponds to a situation in which a set of constraints act successively on a chain
of processes depending on each otheﬂ In the following diagram, for instance:

G G

é %

Ay Ay By

YWhen relevant, we can regroup the constraints acting on a chain of processes into a single one (C,C,), especially
when they act at the same time scale. For example, various proteins are help with protein folding, and they can be grouped
together as a unique (type of) constraint on protein formation. Such regroupings may be particularly relevant in those
cases in which the entire set of proteins involved is not yet known.

10



process Ay — By depends on process A, — A;. Yet, insofar as C; is not the result of a process
constrained by C, there is no dependence between the constraints involved.

Secondly, a relationship of dependence between constraints does not involve a thermodynamic
flow between the generative and the dependent constraints. Indeed, because of condition |lI} the
conservation of C; at Ty, at which it plays its causal role implies that no exchange occurs between the
constraint and the constrained process A, — C; and, therefore, between C, and C;. In contrast,
at scales other than 7,, the relationship between constraints may involve thermodynamic exchanges
which, nevertheless, would not interfere with the causal dependence described at the relevant scale.
At scales shorter than 7, and 74, for instance, exchanges are possible but irrelevant, since these
exchanges would be further compensated at 7, at which time scale the generative constraint is
conserved. This is typically what happens in the case of enzymes, which bind and unbind to/from
the substrate. At scales longer than 7, and 77, on the other hand, the interaction between the
constraints and the processes usually results in the degradation of the former; this degradation,
however, would also be irrelevant to understanding the role of C, as a generative constraint, which
acts at 7, [0}

In a general sense, dependence between constraints can be taken as the organisational principle
underlying any “repair mechanisms” at work in the organism which, in addition to the wide-ranging
literature on DNA repair (Friedberg et al., 1995), also include the repair of all kinds of parts of an
organism (Wang et al., 2009; Bergamini, 2006 Repair requires the existence of a part (C1) which
is conserved while the main process occurs (i.e. its alteration is negligible at the relevant scale, 71),
even though it may be altered in the long run (7;). The maintenance of the system’s organisation,
on the other hand, requires, at time scale 75, the existence of a second subsystem (C,) in charge of

maintaining C; through the adequate canalisation of a process A, 3.

Thirdly (and this is important for preventing possible misconceptions in the next section),
dependence between constraints can occur in two different ways, depending on the relations
between the time scales involved: slow dependence with T, > 71 (below left), or fast dependence with
71 > T, (below right).

scale ! C, scale !
T, | Ap—eo—(Cy T Aq 49—’§ B

In the first case T, > 71, the generative constraint Cy, acts as a constraint at a longer time scale than
the dependent constraint, which means that it is associated with a slower proces@ In the second
case, Ty > T, the generative constraint, Cy, is associated with a faster process than the process
constrained by C;. To be compatible with the symmetry at scale 71 for Cy, the process constrained
by C, has to constitute a statistical (or similar) time symmetry at the longer scale 7;. Although it
may seem more unusual, fast dependence does occur in biological systems. For instance, alcaline
phosphatase is the result of the same process of protein production described above; however, it
constrains bone mineralisation, which is a slower process than its own production.

2 Actually, the degradation of C, at long time scales may provide elements that contribute to A;. For example, let
us consider the situation in which one enzyme depends on another enzyme. Here, the amino acids coming from the
degradation of either of them may provide material to the amino acid pool that, in turn, is used to produce both.

2INote that either reparation or replacement can be encountered. In the first case, the entity is maintained while in
the second it is destroyed and a similar one is reconstructed. As a matter of fact, many situations can be interpreted
as involving both repair and replacement, depending on the scale considered and the precise definition of the relevant
objects: enzymes and cells are replaced, while populations of enzymes and tissues are repaired.

22Note that if the dynamics of C; at scale 7, is smooth in the mathematical sense, then there is a local time symmetry
of C, at sufficiently short time scales. This aspect, added to the status of C; as a constraint at 7y, leads to a global (i.e.
with respect to all the processes considered here) time symmetry of C; at scale 7, providing 7; is small enough.
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Slow and fast dependence differ in an interesting way. When the dependent constraint is faster,
its stability is quite straightforward because something that changes very slowly seems to stand still
from the point of view of something faster. In the opposite case, when the dependent constraint is
slower (which is actually the case for many chemicals involved in development), then a sustained
and stable activity of the faster process is required. As we will suggest in the following section,
organisational closure necessarily requires the joint realisation of both kinds of dependence.

'The last step of this section introduces the notion of direct dependence between constraints.

Definition 3 (Direct dependence between constraints) Cy depends directly on Cy if and only if:
1. Cq depends on C,.

2. There is at least one relevant aspect of Cq that depends on Cy and which fulfils the following condition:
none of the different processes that occur at Ty and contribute to the maintenance of this aspect follows

. G . .
the one constrained by Cy, Ay —> Cy, in physical time.

As we will see in the following section, we argue that the notion of direct dependence plays a
fundamental role in organisational closure. Although we do not provide in this paper a theoretical
justification for this claim, the importance of direct dependence is related to the degree of functional
integration and complexity realised by biological systems: the very existence of the dynamic organi-
sation requires that the maintenance of each constraint subject to closure be under the direct, close
control of some other constraints subject to closure. An indirect, and therefore looser, dependence
would presumably be incompatible with the requirements for such a high degree of complexity and
coordination.

scale | Cs Cy
12 i Az § Ay % C
T1 i Aq 4§—> B

In the above example, C; depends directly on C, but only indirectly on C3. Note that C; and Cp
are not necessarily constraints at the same time scale.

Consider again the example of enzyme formation. The maturation of the protein can be
successively constrained by different entities; the catalysis performed by the enzyme depends
directly only on the constraint exerted on the last process involved. The relevant aspect impacted
in this case is the conformation of the protein or, more precisely, its ability to react to the relevant
chemicals, and the last process involved is the action of other proteins on the endoplasmic reticulum,
in eukaryotic cells. Accordingly, the mrNA population discussed above is only an indirect generative
constraint with respect to the conformation of the protein produced; in turn, it directly contributes
to determining the number of proteins produced during the translation process discussed above,
which is a different aspect of the dependent constraint.

5. Closure

Let us now turn to closure, which we interpret as a specific property of a system with respect to
dependence between constraints.

Definition 4 (Closure) A set of constraints € realises overall closure if, for each constraint C; belonging
t0E:

1. C; depends directly on at least one other constraint belonging to € (C; is dependent);
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2. Tbere is at least one other constraint C; belonging to & which depends on C; (C; is generative).

Aset & which realises overall closure also realises strict closure if it meets the following additional condition:

3. € cannot be split into two closed sets.

Opverall closure refers then to an organisation in which each constraint is involved in at least two
distinct dependence relationships; in other words, each constraint plays the role of both generative
and dependent constraint. The condition added for strict closure is aimed at ensuring that the
definition applies only to one system (rather than two independent systems). In what follows we
will use the generic term 'closure’ to refer to strict closure unless specified otherwise. The network
of all those constraints that meet the three requirements of closure is, we hold, collectively able
to self-determine through self-constraint. Note also that the second condition does not require
direct dependence. The reason is that, while each constraint of " does depend directly on another
constraint included in the same set, it might (and usually does) contribute to indirectly generating
other constraints, typically when several constraints act successively on a chain of processes. For
example, the shape of proteins depends only indirectly on the mrNA sequence since proteins mature
in the endoplasmic reticulum.

As an illustration of closure, consider the following network of dependent constraints:

5| As
(! i Ay
0
T2 i 1

In this diagram, Cq, C,, C3, C4 and Cs satisfy, ex hypothesi, the definition of constraint at
T1, Ta, T3, T4 and 75 respectively. Furthermore, Cy, Cyp, C3 and Cy play the role of dependent
constraints, while Cy, C3, C4,and Cjs are generative constraints. The subset of constraints which are
both generative and dependent is then (Cy, C3, Cy). The organisation constituted by C, C3 and Cy
realises closure.

It should be noted that two scales must be considered for every constraint (C;) included in a
closed system: one scale (74(C;)) at which C; is associated with a time symmetry (74(C3) = 73),
and another (7,4(C;)) at which it is produced and/or maintained (t4(C3) = 74). As shown in the
diagram, one general property of closure is that it must include at least one constraint for which
75(C;) = t4(C;) > 0 and another for which 7,(C;) — 74(C;) < 0: the resulting organisation, therefore,
is not only multiscale but also requires the realisation of bozh slow and fast dependence between
constraints2)

As mentioned in the introduction, this characterisation of closure is, of course, very general and
schematic, and unable to capture the complexity of its actual realisations by biological systems. Yet
at the same time it is precise enough to derive several implications.

Firstly, as argued recently (Mossio et al.,|2009; Saborido et al., 2011) and mentioned briefly

in section [3| above, we claim that constraints subject to closure constitute biological functions.

ZNote also that if, as in the diagram above, each constraint depends on only one other constraint, then the organisation
has very specific properties: namely, the system forms a single closed chain of dependent constraints (a closed subset
would break the chain). On the contrary, there can be multiple closed subsystems when constraints generate and/or
depend on multiple constraints. Biological cases correspond to the second situation: for instance, many constraints
depend on the cellular membrane, on ribosomes or on the vascular system.
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Within this framework, performing a function is equivalent to exerting a constraining action on
an underlying process or reaction. All kinds of biological structures and traits to which functions
can be ascribed satisty the definition of constraint given above, albeit at various different temporal
and spatial scales. In addition to the vascular system and enzymes mentioned above, some intuitive
examples include, at different scales, membrane pumps and channels (which constrain both the
inward and outward flow of materials through the membrane) and organs (such as the heart which
constrains the transformation of chemical energy into blood movement). Closure is then what
grounds functionality within biological systems: constraints do not exert functions when taken in
isolation, but only insofar as they are subject to a closed organisation.

Secondly, closure should be clearly distinguished from independence, insofar as a system which
realises closure is a physically open system, inherently coupled to the environment with which it
exchanges energy and matter (Nicolis & Prigogine, 1977). This implies in particular that closure is a
context-dependent determination, to the extent that it is always realised with respect to a set of specific
boundary conditions, which includes several external (and independent) constraints acting on the
system (such as, for instance, constraint Cs in the diagram above). Consequently, closure does not
and should not include all the constraints with which the system may have a causal interaction, but
rather only the subset of those which fulfils the requirements stated abovﬁ

'Thirdly, closure of constraints is different from the underlying open regime of thermodynamic
processes since, as discussed in section 3} constraints are conserved through the thermodynamic
flow at the relevant time scales. Hence, a description of closure in terms of the causal regime of
thermodynamic changes would be inadequate, since it would be unable to include constraints as
such and their contribution as causal factors. In particular, a description of biological organisation
which does not use the causal power of constraints and their closure would amount to a system
constituted by a cluster of unconnected processes and reactions, whose coordinated occurrence would
be theoretically possible at very long time scales (see the discussion in section [3), but extremely
unlikely (virtually impossible) at biologically relevant time scale@

To conclude this section, let us discuss in a very preliminary way how closure can be described
in practice. As a matter of fact, although closure is different from the thermodynamic flow, it
does unfold over time, mainly because the various functional constraints do not usually operate
simultaneously. Moreover, as mentioned, constraints are such at different time scales, which means
that closure is a multiscale causal regime. Jointly considered, these features raise the question of
how a description of the closed network of dependencies can be obtained. At least two aspects
should be mentioned here.

Firstly, a sufficiently long duration has to be considered, in order to include all the relevant time
scales (from shorter to longer) at which each constitutive constraint can be described, providing
the dynamics of the biological system continue to take place. Usually, for example, the description
of an adult mammal organism requires the consideration of those constraints exerted on relevant
processes with the time scales ranging between a fraction of a second (for fast neural or mechanical
phenomena) and a substantial fraction of the organism’s lifespan (for slow phenomena which are
nevertheless fast enough to be sustained by and within the organisation, such as the maintenance of
bone structure)?]

24The distinction between constitutive and non-constitutive constraints relies mainly on the definition of dependence
established in the previous section. In fact, most external constraints do have causal interactions with the system and,
consequently, either affect it or are aftected by it. Yet, even when it can be shown that a non-constitutive constraint
interacts with the closed system (in which case one may wonder whether or not it is subject to its closure), it should be
also shown that, in accordance with the definition, the relationship of dependence is direct and, moreover, concerns the
relevant aspects thanks to which the entity satisfies the definition of constraint, at the relevant scale.

2This implication makes it possible to distinguish between a closure of constraints and a cycle of processes or reactions
such as, for instance, the hydrologic cycle. In the case of cycles, the entities involved (e.g. clouds, rain, springs, rivers,
seas, clouds, etc.) are connected to each other in such a way as to generate a cycle of transformations and changes. In
turn, these entities do not act as constraints on each other, and the system can be adequately described by appealing to a
set of external boundary conditions (ground, sun, etc.) which act on a single causal regime of thermodynamic changes
(see also|Mossio et al.|(2013)).

26Closure depends on the processes that are considered and their corresponding time scale. For example, the transport
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Secondly, once the constraints have been included, the organisation of dependencies between
them must be described. This can only be done &y abstracting them from the physical time in which they
occur, since closure cannot be described at a given point in time, but rather requires us to consider
a set of processes taking place at different time scales (some processes may not be permanent,
but rather may occur cyclically as is the case with heartbeats, for example). Thus, the whole
network of dependencies should be considered as one “block” extended over multiple time scales.
Accordingly, closure consists of an interdependent relational network of dependencies, extracted
from the dynamics of the system in physical time.

With this general characterisation in mind, we deal in the next section with the application of
closure as a theoretical criterion for drawing boundaries between systems in the biological domain.

6. Closure and boundaries

In principle, closure constitutes a clear-cut criterion for drawing the boundary between a
biological entity and its environment. In organisational terms, in fact, the set of constraints subject
to closure define the system, whereas all other constraints (and specifically those which have causal
interactions with the system), belong to the environment. Accordingly, the ascription of closure to a
system calls for a “yes or no” answer, usually based on a topological (circular) property of the network
of interactions (whatever the underlying mathematical framework). At first glance, this holds true
for our characterisation: in our abstract example above, constraints C,, C3 and Cy constitute the
system, whereas constraints C; and Cs do not. Furthermore, as a distinctive and fundamental
biological feature, closure is first and foremost supposed to apply@ to biological organisms (both
unicellular and multicellular cases), the prototypical example of organised systems.

Nevertheless, one may wonder whether (and indeed how), without further specifications,
closure can be ascribed to parts of organisms on the one hand, and to systems whose constituents
are themselves organisms on the other. In other words, the question of the “lower and upper”
boundaries of closure calls for a conceptual and formal treatment; in this section, we take some
preliminary steps in this direction.

Let us consider first the lower boundaries of closure ascription. The crucial remark is that,
in practice, any actual description of closure in biological systems is a partial one, as a complete
characterisation of the whole set of mutually dependent constraints is usually not available, and
constitutes a sort of “theoretical horizon” of biological explanation.

Consequently, the incompleteness of current descriptions may generate a dilemma: either
closure is to be ascribed to whatever system fit these incomplete descriptions, in which case some
parts of biological systems may possibly be taken as closed; or closure is to be ascribed only to those
systems for which complete descriptions are currently available, in which case virtually no system
would meet the requirements.

In order to overcome this difficulty, we suggest the following strategy. In the absence of
complete descriptions, closure should only be ascribed to maximally closed systems, i.e. those systems
which include all mutually dependent constraints, in the available description. Maximally closed
systems therefore constitute the lowest boundary of closure ascription: in principle, no subsystem of
collectively dependent constraints that can be shown to belong to an encompassing closed system
can be said to realise closurd?]

of blood in a blood vessel can be considered globally (for example average time to travel from the heart to the organs and
back again to the heart), or more locally (time spent inside a capillary). Processes may also be described in more or less
detail. Typically, different processes may be grouped together, and some aspects of the systems can be ignored. This is
particularly the case when, in the context of closure, one is studying a specific part of an organism that is not (much)
dynamically impacted by some other aspects of the closed system.

1t is worth recalling that from our perspective, although an organism necessarily realises closure, a system realising
closure is not necessarily an organism. In other words, closure does not define the notion of organism: see Moreno &
Mossio| (2015)) for an analysis of this issue.

“ Accordingly, a conceptual distinction can be made between “mutual dependence” and “closure”: while the former
is realised by any (sub)set of entities which depend directly on each other, the latter is realised by the set of all entities
which are mutually dependent within a system. So for instance, although the heart and lungs are mutually dependent,
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Let us now turn to all those cases in which two or more biological organisms establish a form
of mutual dependence due to stable interactions between them, such that each of them can be
said to rely on the other(s) for its own maintenance. In these situations, in which a fundamental
organisational continuity exists between the interacting organisms, the upper boundaries of closure
ascription seem to extend beyond each organism, insofar as the notion of maximally closed system
applies only to the encompassing system which contains all (known) constraints subject to closure.
If we were to limit ourselves to this analysis, it would be impossible to describe systems including
different nested levels of organisational closure and systems belonging to closed systems (and
specifically mutually dependent organisms) would not themselves realise closure as discussed above.
Moreover, since biological organisms are systematically involved in such interactions it would follow
that most of the time individual organisms cannot be said to realise closure. The main theoretical
upshot would be a serious weakness for any account based on closure, which could not be considered
a distinctive property of organisms in many biologically relevant cases. In the remainder of this
section, we will address this challenge in a (preliminary) conceptual and formal way. We distinguish
three different situations in which two or more closed systems realise mutual dependence.

'The first situation is that in which the disjunction between the interacting closed systems is
straightforward. In this case, either there is no mutual dependence between the two closed systems
or, if there is a mutual dependence, then the relationship between the systems is, at least in one
direction, one of indirect dependence. To use the technical terms introduced in section above, the
encompassing system which includes the interacting systems realises overall closure, but no# strict
closure. For instance, consider the case of a group of humans in which there is a division of labour,
with some members being in charge of hunting, and others in charge of cooking. Let us suppose
that both hunting and cooking could be pertinently characterised as macroscopic constraints exerted
on the flow of energy and matter. Collectively, there is some mutual dependence between the
members of the group, although the dependence on hunting would presumably be indirect, in
the precise sense that the processes constrained by hunting are followed by other processes that
contribute to the maintenance of the organisation of the members of the group. Of course, a finer-
grained description of this kind of dependence would be needed, but we will leave that for a future
paper. For the purposes of this paper, we simply suppose that many cases of biological interactions
could be pertinently described in terms of indirect mutual dependence; thus, the characterisation of
closure we provided, which explicitly requires direct dependence (so as to capture a distinctive feature
of biological integration), makes it possible to exclude these kinds of looser, although mutually
beneficial, interactions.

The two other situations that we discuss in the following sub-sections both involve, ex hypothesi,
direct mutual dependence between organisms. Firstly, there are cases in which a limited number of
individual organisms realise mutual dependence, a situation which results in the establishment of an
encompassing closed system (such as for instance in the classical example of mutualistic symbiosis).
As we will suggest, organisational boundaries can be drawn in this case between the interacting
organisms, although they do not correspond to strict discontinuities but rather to a quantitative
evaluation of the tendency to closure (section6.1)). Secondly, we will examine those cases of populations
or groups of organisms which collectively contribute to the emergence of an encompassing closure;
cells in multicellular organisms are a paradigmatic example. In this kind of situation, we argue (in
section that the closure of the collective system may, in some conditions, be separated from
that realised by the constitutive organisms. Such separation provides the grounds for characterising
different Jevels of closure.

6.1. Tendency to closure

Let us consider two or more biological organisms (two abstract cells), each of which could
be said to realise closure when taken in isolation. Moreover, let us assume that the cells establish
strong interactions resulting in direct mutual dependence. As a result, the encompassing system
is the maximally closed system which realises closure. In this situation, is there a legitimate way

only the whole set of organs forming the organism realises (ex hypothesi) closure.
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to argue that the individual interacting cells also realise closure? As mentioned above, closure is
usually considered a Boolean property. Here, we propose to apply our characterisation in a different
way, and to describe a procedure which enables closed systems to be delimited through the drawing
of their spatial boundaries. The general idea is to use a quantitative assessment of the tendency of
constraints to be “packed together” in space.

Let us choose an arbitrary volume of space 7 (included inside one of the cells, for example) and
consider the processes and constraints taking place inside this volume. We use K(Z") to refer to the
number of dependencies between constraints subject to closure in the encompassing system which
take place in 7. Intuitively, K(7") represents a quantitative assessment of the organised complexity
contained in 7@ If we now continuously increase the volume 7, K(7") will also increase (it
cannot decrease because it includes an ever larger number of constraints). We hypothesise that,
when appropriately chosen, 7 can initially include only part of a cell, and then grow so as to include
the entire cell: in this case, K(7") will rapidly increase and then remain steady. Accordingly, its
derivativelﬂ will be positive within the cell, reach a peak at the boundary and then collapse (to
zero, in the limiting case). The assessment of organised complexity is completed by considering
K(7",1), which is defined as above, except that we select the dependencies occurring on a given
spatial expanse [ (a spatial scale). Note that the sum of K(77,[) over all [ equals K(Z").

A procedure to represent the boundaries between the interacting cells can be implemented by
relying on this measure of complexity. Let us presuppose some 4 priori knowledge of the localisation
of the considered cells in space, which guides the choice of the initial volume{ﬂ Any increase of 7~
will lead to an exploration of the spatial domain of the system. Given that this exploration may take
different forms, we can specify it so as to include the cells sequentially, one by one (see one of the
examples below). The quantity that we propose to represent with this procedure is SK(77, 1), i.e. the
increase in the number of dependencies which corresponds to the increase in volume 67°. 6K(77, 1)
will be represented as a function of both I and the volume 7 already explored. The spatial scale
enables one to associate a process that is included in our representation with an extended region of
space.

We submit that the SK(77, 1) is a measure of the zendency to closure of the organisms involved.
As shown in figure 1}, measuring OK(7", [) generates a pattern which has higher values when it cor-
responds to the volume of an organism, collapses thereafter, and increases again when it corresponds
to a new organism. Such a pattern also provides a quantitative measure of closure for each organism
and, through the discontinuities (points of collapse), a representation of the boundaries between
the interacting organisms. It should be noted that, since 0K(7", 1) is a quantitative measure of
the dependencies subject to closure (and not just individual constraints), its value will be highly
dependent on those constraints which are involved in many dependencies. A good example are
membranes, which are involved in so many dependencies that their inclusion in the graph would
dramatically enhance the tendency to closure of the considered volume.

'The tendency to closure is a measure of the degree of organisational integration of organisms
and, as well as, an operational tool for drawing the boundaries between them, even when they
establish functional dependence. It is worth emphasising, in this respect, that such a measure comes
in degrees. For example, one can conjecture that the tendency to closure is higher for a unicellular
eukaryote than for a cell in a metazoan. Similarly, the tendency to closure of a biofilm is arguably
weaker than that of an individual bacterium, or a metazoan. The same differences might also emerge
when comparing closed systems located at various nested levels of organisation (see the following
subsection), such as, for instance, in the case of the ant and its colony.

Although the above treatment is still preliminary, the formal expression of the tendency to
closure (as a quantitative assessment of organised complexity) will hopefully pave the way to future
scientific exploration.

2This definition is adopted for the specific purposes of this discussion. For general purposes, a more refined definition
of organised complexity should be formulated.

30Note that this count is a discrete quantity that we discuss in continuous terms. The reason for this is that we are
especially interested in situations where there are many constraints, which enable continuous approximations.

31Such knowledge may take the form of a biological hypothesis that the procedure will enable to test.
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Figure 1: 'This figure is a toy example of the procedure described in the text. LEFT: Two highly simplified cells that
share two functions Cg and C§, taking place in this case at an higher spatial scale. This situation can be interpreted as
a schematic representation of mutualistic symbiosis, in which each symbiont exerts some macroscopic function (used
by the other, and vice-versa) that can be distinguished from its own internal constitutive functions. The two cells are
mutually dependent, and the encompassing system realises (maximal) closure. The diagram represents a simplified graph
of constraint dependences (processes are not included). Each dependence (wavy arrows) is described as a function of its
spatial scale [ and its localisation in the volume V. RicHT: the volume V starts growing from the left and encounters a
first entity, composed of several constraints at similar spatial scales. While exploring the first cell, 0K(Z”, ) increases,
reaches a peak when it includes the whole cell, and then collapses when it goes beyond the cell. The increasing volume
then encounters the second cell and generates a similar representation, shifted in space. At some point, the shared
functions Cg and Cg (which in this situation are described at a larger spatial scale) are also included when V reaches
the relevant size. As a result, in spite of the fact that the interacting cells belong to an encompassing system realising
closure, the procedure enables them to be represented as two discriminable systems. At the same time, the procedure also
captures the fact that the two cells are symbiotic by representing their mutual dependence (here, at a different spatial
scale). Note that, in this example, the degree of organised complexity of the interacting cells is higher than that of the
encompassing closed system.
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6.2. Hierarchical boundaries of closure

'The tendency to closure makes it possible to identify relevant biological interacting entities in
those (widespread) cases in which there is some degree of functional overlap between them. In this
sub-section, we discuss a different kind of situation, in which a closed organisation is composed of
constituents which hemselves realise closure: the paradigmatic example is a multicellular organism
made up of its cellular constituents.

One possible view on this situation is that the cells contribute to the realisation of the multi-
cellular organism and are, therefore, also subject to the encompassing closure. Consequently, the
boundaries of each individual cell can only be drawn by measuring their tendency to closure, as
discussed in the previous section.

However, we submit that this situation has specific properties. Indeed, individual cells usually
do not technically exert a constraint which contributes to the maintenance of the multicellular
system. Rather, functions subject to multicellular closure are exerted by populations or groups
of cells that form #issues and organs. In the formal framework proposed in the previous section,
this situation can be described by emphasising two aspects, both related to the very definition of
constraint. Firstly, the contribution of an individual cell does not meet condition [[| of the definition
of constraint, for the specific reason that its effects on the process are negligible. For example, the
contribution of an individual epithelial cell to the regulation of insulin levels is negligible. Secondly,
individual cells also fail to meet condition [[I} insofar as the relevant symmetries which characterise
the constraint are respected at higher scales (both spatial and/or temporal) than those at which the
individual cells are described. For example, in relation to the constraint exerted on the blood flow
by blood vessels, it is fairly apparent that many cells are required to obtain the geometrical and
topological properties on the basis of which the relevant constraint becomes operational.

Thus, overall, it seems that cells do not usually act as constraints individually, but only collectively,
when they are assembled in tissues and organs. Consequently, it follows that in most cases there is
no mutual dependence between each cell and the encompassing system, enabling their respective
closures to be separated, even though they realise a nested hierarchy (the closure of the cells is
nested within the closure of the encompassing system). In a sense, this implies that the internal
functional aspects of the cells can be separated from those aspects that matter for the organism’s
organisation. The separation between nested closures provides a straightforward basis for drawing
the boundaries between organism@

We conjecture that a relationship between two closures of constraints which involves both
separation and a nested hierarchy provides the theoretical basis for characterising, in our framework,
a distinction between /evels of organisation. Two closed regimes constitute two different levels of
organisation if they are both separated and hierarchically nested; accordingly, cells and multicellular
organisms constitute two different levels of organisation.

We leave a full-fledged analysis of this issue for future work. Let us simply mention that other
levels of organisation could presumably be identified beyond the unicellular and multicellular ones:
an example could be ecosystems (Nunes-Neto et al., 2014). At the same time, not just any level
of description would qualify as a level of organisation in this technical sense: arguably, a relatively
small number of levels could be identified in the biological realm.

7. Conclusion: invariance and variation

In this paper, we have argued that the specificity of biological systems lies in their capacity for
self-determination as self-constraint. As discussed above, the central idea is that self-constraint
occurs in biological systems in the form of closure, i.e. a causal regime in which a set of mutually
dependent constraints act on the flows of energy and matter so as to collectively maintain themselves,
and their organisation, over time. In turn, the fundamental formal distinction between the two

32Tt should be emphasised that such a separation, of course, does not imply that there would be no interactions between
the cells and the multicellular organism. For instance, cells are continuously under the control exerted by multicellular
functions.
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regimes of causation at work (constraints and processes) relies on the identification of symmetries,
and local conservations, at the relevant (temporal) scales.

As a conclusion, we would like to examine an underlying theoretical implication of this frame-
work, already evoked in section |2} i.e. the fact that closure constitutes a principle of stabilisation of
biological organisation and, therefore, a fundamental biological invariant. At the same time, the
invariance of closure by no means signifies that biological systems are not subject to variability. Let
us develop this idea.

As argued above, closure takes place in a temporal interval, and can be described by abstracting
the network of closed dependencies from the time flow. In this formal framework, the claim
according to which closure constitutes an “invariant” of biological organisation technically means
that a description of closure is possible for any interval long enough to describe a sufficient set of
constraints and their mutual dependencies. In other words, given a minimum duration, closure is
realised for any interval of equivalent duration chosen in the system’s lifetime. The stabilisation of
biological phenomena results specifically from the continuous control exerted over processes and
reactions by functional constraints whose maintenance in the long run depends in turn on their
mutual dependence through closure. The invariance of closure grounds the stabilisation of the
functional organisation.

Stabilisation, however, does not prevent variation, which may refer to two different kinds of
changes. On the one hand, organised constraints can exhibit negligible variations, i.e. variations
which do not affect their functional role and do not, therefore, alter the overall organisation. This
may be the case when the variation occurs only at short time scales (and is then compensated for),
or when then variation is irrelevant with regards to the eftects of the constraint on the process. On
the other hand, biological systems may (and do) undergo functional changes both throughout their
lifespan and over the generations. These changes affect the structure and function of one or more
constraints, which in turn result in a modification of the organisation. Functional variations are
related to many factors, including the life cycle and the interactions with the environment, as well
as random changes.

In some cases, functional variation threaten the viability of the whole system, and may possibly
lead to its break—uﬂ 'The crucial thing to bear in mind in this respect, however, is that functional
variation is not merely an obstacle for the maintenance of the biological organisation; rather, it is
also a crucial requirement for the adaptivity, increase in complexity and ultimately the long-term
sustainability of life (Ruiz-Mirazo et al., 2004). Indeed, in addition to their functional role within a
specific organised system, constraints also play a role in enabling the emergence of new constraints,
new organisations and new behaviours, typically at the evolutionary and populational scales (Longo
et al., 2012a;|Longo & Montévil, 2013). Reciprocally, functional variation alters the organisation
and yet must be subject to closure in order to be sustained over time. The contingency of biological
systems, and their capacity to undergo changes for both intrinsic and extrinsic reasons, justifies the
need for the collective maintenance of the constraints.

As biological systems undergo functional variations, their organisation maintains closure, albeit
realised in different variants, because of the continuous acquisition of some functions, and the
loss of others. In this sense, the invariance of closure takes place at a level of description which is
higher than that at which each specific organisation (instantiated by an individual system) occurs.
Understood in this way, the invariance of closure may be said to be complementary to its functional
variation, with both being constitutive principles for biology. In a word, the role of closure as a
principle of stabilisation becomes all the more important when the contingency of biological systems
is placed at the heart of their understanding.
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